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Abstract

Representation learning algorithms automatically learn the
features of data. Several representation learning algorithms
for graph data, such as DeepWalk, node2vec, and Graph-
SAGE, sample the graph to produce mini-batches that are
suitable for training a DNN. However, sampling time can be
a significant fraction of training time, and existing systems
do not efficiently parallelize sampling.

Sampling is an “embarrassingly parallel” problem and may
appear to lend itself to GPU acceleration, but the irregu-
larity of graphs makes it hard to use GPU resources effec-
tively. This paper presents NextDoor, a system designed
to effectively perform graph sampling on GPUs. NextDoor
employs a new approach to graph sampling that we call
transit-parallelism, which allows load balancing and caching
of edges. NextDoor provides end-users with a high-level
abstraction for writing a variety of graph sampling algo-
rithms. We implement several graph sampling applications,
and show that NextDoor runs them orders of magnitude
faster than existing systems.
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1 Introduction

Representation learning is a fundamental problem in machine
learning. Its goal is to learn features of data instead of hand-
engineering them. Representation learning on graph data
involves mapping vertices (or subgraphs) to a 𝑑-dimensional
vector known as an embedding. The embedding is then used
as a feature vector for other downstream graph machine
learning tasks. Graph representation learning is a fundamen-
tal step in domains such as social network analysis, recom-
mendations, epidemiology, and more.

Several algorithms for graph representation learning first
sample the input graph to obtain mini-batches and then train
a deep neural network (DNN) or a graph neural network
(GNN) based on the samples. Moreover, different learning
algorithms require different samplingmechanisms. For exam-
ple, DeepWalk [28] and node2vec [12] use variants of random
walks. In contrast, GraphSAGE [13], which Pinterest uses
for recommendation [39], samples the 𝑘-hop neighborhood
of a vertex and uses their attributes to learn an embedding
for each vertex.
Although several systems effectively leverage GPUs for

the DNN training step, the same is not true for the sampling
step. Graph sampling takes a significant portion of total train-
ing time in real-world applications. Table 1 shows the impact
of graph sampling in existing GNNs. In each epoch, a GNN
first samples the input graph to obtain mini-batches and then
trains the DNN. Graph sampling is an irregular computation
that is typically performed using the CPU, whereas training
is performed on the GPU. In our experiments, we found that
graph sampling can take up to 62% of an epoch’s time.1 This
bottleneck is further exacerbated if the CPU is attached to
multiple GPUs and cannot produce enough samples to satu-
rate them. Hence, accelerating graph sampling is important
to improve the end-to-end training time.
Since samples are drawn independently, graph sampling

is an “embarrassingly parallel” problem that seems ideal for
exploiting the parallelism of GPUs. However, for a GPU to
provide peak performance, the algorithm must be carefully
designed to ensure regular computation and memory ac-
cesses, which is challenging on irregular graphs. Several

1We use a 16-core Intel Xeon Silver CPU and an NVIDIA Tesla V100 GPU.
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Input Graphs PPI Reddit
GraphSAGE [13] 51% 45%
FastGCN [3] 26% 52%
LADIES [44] 40% 62%
ClusterGCN [6] 4.1% 24%
GraphSAINT [40] 25% 30%
MVS [7] 24% 25%

Table 1. Fraction of time spent in graph sampling in training.

systems have been designed for random walks [38], graph
mining [5, 15, 23, 35], and graph analytics [19, 26, 31, 37].
These systems consider samples (or subgraphs) as the funda-
mental unit of parallelism: they grow all samples in parallel
by looking up the neighbors of the vertices of each sample.
However, such an approach leads to two issues in these sys-
tems: (i) irregular memory accesses and divergent control
flow because consecutive threads can access the neighbors
of different vertices, and (ii) lower parallelism because com-
putation on all vertices in a sample is performed serially by
the thread responsible for growing the sample.
In this paper, we present NextDoor, the first system to

perform efficient graph sampling on GPUs. NextDoor intro-
duces transit-parallelism, which is a new approach to parallel
graph sampling. In transit-parallelism, the fundamental unit
of parallelism is a transit vertex, which is a vertex whose
neighbors may be added to one or more samples of the graph.
In transit-parallelism, each transit vertex is assigned to a
group of threads such that each thread adds one neighbor
of the transit vertex to one sample. With this technique we
obtain better GPU execution efficiency due to lower warp
divergence, coalesced global memory accesses, and caching
of the transit vertex edges in low-latency shared memory.
Thus the irregular computation on the graph is changed to a
regular computation. NextDoor effectively balances load
across transit vertices, by assigning them to different kernels
based on the number of samples associated with a transit
vertex. Each kernel uses a different scheduling and caching
strategy to maximize the usage of execution resources and
memory hierarchy. NextDoor has a high-level API that
abstracts away the low-level details of implementing sam-
pling on GPUs and enables ML domain experts to write
efficient graph sampling algorithms with few lines of code.
NextDoor achieves significant speedups over state-of-the-
art systems for graph sampling and improves training time
of existing GNN systems by up to 4.75×. The contributions
of this paper are:

• A high-level API for building graph sampling algo-
rithms with efficient execution on GPUs (Section 4).

• A new transit-parallel paradigm to perform graph sam-
pling on GPUs (Section 5).

• NextDoor, which leverages transit-parallelism and
adds techniques for load balancing and caching of a
transit’s adjacency list (Section 6).

Layer 1

Layer 2

Layer 2

Input Graph Graph Neural Network 2-D vertex embeddings

Figure 1. Representation learning on graphs. For each vertex
of the input graph (on left), the Graph Neural Network (in
middle) aggregates the information from 𝑘-hop neighbors
back to the vertex. After training, each vertex is mapped to
an embedding in a 2-dimensional space (on right).

• Performance evaluation of NextDoor against state-of-
the-art systems: (i) a system of writing random walks
KnightKing [38], (ii) existing GNNs (GraphSAGE [13],
FastGCN [3], LADIES [44], GraphSAINT [40], MVS [7],
ClusterGCN [6]), and (iii) two graph processing frame-
works Gunrock [37] and Tigr [26] (Section 8).

NextDoor and our experimental setup is available at
https://plasma-umass.org/nextdoor-eurosys21/.

2 Background and Motivation

2.1 Representation Learning on Graphs

The goal of a graph representation learning algorithm is to
map vertices (or subgraphs) to an embedding, which is a
𝑑-dimensional vector (Figure 1).

Early algorithms, such as DeepWalk [28] and node2vec [12]
employ shallow encodings. Given an input graph with 𝑛 ver-
tices and a target 𝑑-dimensional Euclidean space, a shallow
encoding is a 𝑑 ×𝑛 matrix where the 𝑖𝑡ℎ column contains the
embedding of vertex 𝑣𝑖 . These algorithms are transductive:
they take a static graph as input and produce embeddings
only for the vertices in that graph. They typically adapt
the Skip-Gram approach [24] to graphs, performing random
walks to obtain context and target vertices.

More recent algorithms, including GraphSAGE [13], are
inductive: they produce embeddings that generalize to pre-
viously unseen vertices. This property is particularly useful
to build inference algorithms that work on dynamic, real-
world graphs. Inductive algorithms learn a deep encoding,
i.e., a function describing how to obtain a mapping, instead
of the static map, and are also known as Graph Neural Net-
works (GNNs). Social networks like Pinterest uses GNNs to
recommend newly added posts to users [39].
During GNN training and inference, each vertex aggre-

gates information from nodes in its 𝑘-hop neighborhood
using a neural network. Hops correspond to network layers,
which are arranged as a tree. Aggregation follows the tree
from the 𝑘-hop vertices back to the root vertex (Figure 1).
Some GNN training systems perform whole-graph train-
ing, that is, they execute aggregation across the entire input

https://plasma-umass.org/nextdoor-eurosys21/
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graphwithout sampling [16, 21]. Most GNN algorithms, how-
ever, use mini-batching, where a mini-batch consists of a set
of root vertices and a sample of their 𝑘-hop neighborhood
(e.g., [3, 6, 7, 13, 40, 44]). The mini-batching approach based
on sampling is easier to parallelize and scale to large graphs.

2.2 Requirements for GPU Performance

We now present an overview of modern GPU architectures
and highlight characteristics of high-performance GPU code.
These characteristics motivate the design of NextDoor.

The fundamental unit of computation in a GPU is a thread.
Threads are statically grouped into thread blocks and as-
signed a unique ID within a block. A GPU has multiple
streaming multiprocessors (SMs), each of which executes one
or more thread blocks. GPUs have several types of memory,
two of which are relevant for this paper: (1) Each SM has a
private memory, called shared memory, which is only avail-
able to thread blocks assigned to that SM; (2) The GPU has
global memory, which is accessible to all SMs. The access
latency for global memory is significantly higher compared
to shared memory and registers.

To run a thread block, an SM schedules a subset of threads
from the thread block, known as a warp. A warp typically
consists of 32 threads with consecutive thread IDs. Moreover,
GPUs employ a Single Instruction Multiple Threads (SIMT)
execution model: all threads in a warp run the same instruc-
tion in lock-step. One consequence of this execution model
is that two threads cannot execute both sides of a branch con-
currently. Therefore, when the threads in a warp encounter
a branch, the subset of threads that do not take the branch
must wait for other threads to complete the branch. This
phenomenon is known as warp divergence can lead to poor
performance. Thus, minimizing warp divergence is key to
achieving high-performance on GPUs.
It is also important to balance load across thread blocks.

Suppose an SM is assigned to run thread blocks𝐴 and 𝐵. Each
thread block reserves a portion of SM resources, including
registers and shared memory. When 𝐴 is waiting, e.g., due
to memory latency, the SM cannot switch execution to 𝐵

because the resources reserved by 𝐴 are unavailable to 𝐵.
(This behavior is very different from threads on a CPU, where
context switches save registers to memory, thus all CPU
registers are available to all threads.) Hence, we need to
balance resource usage across thread blocks to concurrently
execute the maximum number of thread blocks per SM.
Finally, a GPU program must explicitly choose to work

with shared or global memory, and use shared memory when
possible to maximize performance. In particular, when a
thread waits on a memory access, it blocks all other threads
in the same warp (another consequence of the SIMT execu-
tion model). Therefore, the high latency of global memory
access is particularly significant. Fortunately, the GPU can
provide high-bandwidth access to global memory by coalesc-
ing several memory accesses from the same warp. This is

only possible when concurrent memory accesses from threads
in the same warp access consecutive memory segments.

3 An Abstraction for Graph Sampling

We introduce a general-purpose abstraction for graph sam-
pling and use it to express common sampling algorithms.
The input to a graph sampling algorithm is a graph and
an initial set of samples, where each sample is a subset of
vertices (and optionally edges) of the graph. The algorithm
iteratively grows each sample to include additional vertices
in a series of steps, and its output is the final set of expanded
samples. At each step, a sampling algorithm performs the
following operations for each sample:
1. Iteratively sample one vertex at a time and add it to the

sample. This operation can access the neighborhood of
some vertices, which we call transit vertices.

2. Determine the set of transit vertices for the next step.
A graph sampling application can be expressed by providing
user-defined functions that describe how to perform these
operations. Namely, the next function describes how to sam-
ple one new vertex. The samplingType function describes
the granularity at which we sample new vertices. There are
two types of sampling:
1. Individual Transit Sampling: the next function is executed

per-transit a fixed number of times. It has access to the
neighborhood of that transit.

2. Collective Transit Sampling: the next function is executed
per-sample a fixed number of times. It has access to the
combined neighborhood of all transit vertices.

Finally, the stepTransits function selects the vertices of the
sample that will act as transit vertices in the next step. Other
user-defined parameters are the number of steps 𝑘 , which
could be set to ∞ if it varies from sample to sample, and the
maximum number𝑚𝑖 of new vertices sampled per transit
vertex (for individual transit sampling) or per sample (for
collective transit sampling) at step 𝑖 . We now show that by
changing these user-defined functions and parameters, we
can express a wide variety of sampling algorithms.
Random walks [12, 27, 28] A random walk starts from
some initial set of root vertices. In a static random walk, the
probability of picking an edge is known beforehand, whereas
in a dynamic randomwalk, the probability of picking an edge
depends on properties of vertices that were previously visited
on that walk. DeepWalk [28] performs fixed-size biased static
random walks, where the probability of following an edge is
proportional to the edge weight. Personalized Page Rank [14]
performs a variable-size biased static random walk, where
the probability of ending the random walk is defined by the
user. In contrast, node2vec [12] is a dynamic random walk,
which can be biased to stay closer to the starting vertex or
to sample vertices that are further away. Yang et al. [38]
provide a taxonomy of different types of random walks.
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(b) 2-hop Neighborhood sampling
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2 65 1 4 S2
3 5 3

(c) Layer Sampling

Figure 2. Execution of a 2-hop Neighborhood sampling and Layer Sampling on graph in Figure 2a for samples S1, S2, and S3.
For both applications the 𝑛𝑒𝑥𝑡 function uniformly samples two neighbors i.e.,𝑚1 = 2 and𝑚2 = 2, and stepTransits returns the
vertices added in previous step as transits. S𝑖𝑗 denotes the vertices obtained after step 𝑖 for sample S𝑗 . Initially, 𝑆1, 𝑆2, and 𝑆3
contains a single vertex. In the first step, the neighbors of transit vertices, i.e., 2○, 3○, and 1○ are added to the sample by both
applications. While 2-hop Neighborhood choose two neighbors of each transit vertex, Layer Sampling choose two neighbors
from the set of all neighbors of all transit vertices of a sample. In the second step, vertices sampled in first step becomes the
transit vertices. Output of both sampling applications for each sample contains all vertices sampled at all steps.

Our abstraction supports random walks as follows. Ran-
dom walks are individual transit sampling applications be-
cause they sample a single neighbor of each transit vertex of
the sample at each step. Every element𝑚𝑖 is 1, since all ran-
domwalks add at most one vertex at each step. Since the tran-
sit vertex is the previously sampled vertex, the stepTransits
function returns the previously sampled vertex in the sam-
ple. The root vertices are the initial samples, such that each
sample is assigned one root vertex. The number of steps 𝑘
describes the length of the fixed-size random walks in al-
gorithms like DeepWalk and node2vec. In these algorithms,
𝑛𝑒𝑥𝑡 always returns a vertex. However, for applications that
perform a variable-size walk, such as Personalized Page Rank,
𝑘 is set to∞. For termination, 𝑛𝑒𝑥𝑡 can decide to not add a
new vertex to the sample. The walk for a sample ends when
the sample has no more new transit vertices.
MultiDimensional RandomWalks [30] generalize regu-
lar random walks. Each initial sample (walk) has a set of
root vertices, which are potential transit vertices. Each step
extends the walk as follows. First, a transit vertex is selected
from the set of root vertices. Then, a neighbor of the transit
vertex is added to the sample and replaces the transit vertex
in the set of roots. Multi-dimensional random walks can be
represented in our abstraction as follows. These walks per-
form individual transit sampling with 𝑘 set to the length of
walk, and each element𝑚𝑖 to one. The function stepTransits
returns a transit vertex for a sample by randomly choosing
one of the root vertices and then the 𝑛𝑒𝑥𝑡 function chooses
a neighbor of the transit vertex. GraphSAINT [40] samples
the graph using multi-dimensional random walks.
𝑘-hop Neighborhood Sampling [13] A 𝑘-hop neighbor-
hood sampling algorithm employed in GraphSAGE [13] adds
one or more neighbors of a transit vertex at each step. Fig-
ure 2b shows the execution of a 2-hop Neighborhood sam-
pler that samples two neighbors of each transit at every step.

This is individual transit sampling and can be represented
in our abstraction by setting 𝑘 = 2, 𝑚1 = 𝑚2 = 2, having
stepTransits return all the vertices added in previous step as
transit, and having next uniformly choose neighbors of each
transit vertex and add them to the sample.
Layer Sampling [10] At each step 𝑖 , layer sampling samples
𝑚𝑖 vertices from the set of neighbors of all transit vertices
of a sample, until the size of the sample reaches a maximum
size (𝑀) given by the user. Unlike the sampling applications
we have seen previously, layer sampling is a collective transit
sampling algorithm, where𝑚𝑖 neighbors are chosen from
the set of all neighbors of all transit vertices of a sample. The
transit vertices of a sample at a step are the vertices added in
previous step to the sample. Since this sampling can run for
arbitrary steps, we set 𝑘 to ∞ and the next function chooses
a neighbor from the set of all neighbors, if the size of the
sample is less than𝑀 , otherwise next does to not add a new
vertex to the sample. Figure 2c shows the execution of Layer
Sampling that samples two edges from each transit vertex.
This can be represented in our abstraction by setting 𝑘 = 2,
𝑚1 =𝑚2 = 2, having stepTransits return the vertices added in
previous step, and having next uniformly choose a neighbor
from the combined neighborhood.

4 Graph Sampling using NextDoor

This section presentsNextDoor’s API, which is based on our
graph sampling abstraction that we presented in the previous
section. The API allows users to write a variety of graph
sampling algorithms in just a few lines of code. Moreover, it
allows users who are not experts in GPU programming to
leverage modern GPU architectures.

4.1 Programming API

The inputs toNextDoor are a graph, an initial set of samples,
and several user-defined functions (Figure 3), whichwe detail
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below. The output is an expanded set of samples. If desired,
NextDoor can pick the initial set of samples automatically
(e.g., select one random vertex per sample).

The user selects collective or individual transit sampling
using samplingType. The stepTransits function returns
the transit vertices for a sample at a given step. In individ-
ual transit sampling, the number of transit vertices for each
sample at step 𝑗 are

∏𝑗

𝑖=0𝑚𝑖 . In collective transit sampling,
the number of transit vertices for each sample are𝑚𝑖−1. This
function takes three arguments: 1) the step (step), 2) the
sample (s), and 3) the index of transit out of all transits
to return (transitIdx). The user must also define a sam-
pling function to use at each step of the computation (next).
This function receives four arguments: 1) the sample (s),
2) the source edge set to sample neighbors from (srcEdges),
3) transit vertices (transits) forming the source edge set,
and 4) the current step (step). If the sampling is individual
transit sampling then transits contains only a single transit
vertex and srcEdges contains the edges of this transit ver-
tex. Otherwise, transits contains all transit vertices of the
sample and srcEdges contains edges of all transit vertices.
The result of nextmust be a vertex to add to 𝑠 (or a constant
NULL that indicates not to add a neighbor). The function
s.prevVertex(i, pos) returns the vertex added at posi-
tion pos of the last 𝑖𝑡ℎ step, and the function s.prevEdges(i,
pos) returns the edges of that vertex. This information is
necessary for applications, such as node2vec. The steps
function defines the number of computational steps in the
application (𝑘). For applications that do not run for a fixed
number of steps, such as Personalized Page Rank and Layer
Sampling, they can return a special constant INF and the sam-
pling process for a sample is stopped when no new transit
vertices are added to the sample. The value returned by the
sampleSize function determines how many times the next
function is invoked on each individual or collective neigh-
borhood for each sample at each step. The unique function
specifies if at a step the sample should contain only unique
vertices. The Vertex class has utility methods for comput-
ing the vertex degree, the maximum weight of all edges
(maxEdgeWeight), and the prefix sum of all edges’ weights.
Users can extend the class to include application-specific
vertex attributes to be added to the samples.
Output format NextDoor supports two output formats
based on the application. 1) NextDoor can return an array
of samples, such that each sample contains all transit vertices
sampled at all steps. This format is required by GNNs that use
random walks and layer sampling. 2) NextDoor can return
vertices sampled at each step in an individual array. This
format is required by GNNs that uses 𝑘-hop neighborhood
sampling. The arrays are stored in the GPU in both cases.

1 Vertex next(Sample s, Array <Vertex > transits ,

2 Array <Edge > srcEdges , int step);

3 int steps ();

4 int sampleSize(int step);

5 bool unique(int step);

6 enum SamplingType {Individual , Collective };

7 SamplingType samplingType ();

8 Vertex stepTransits(int step , Sample s,

9 int transitIdx );

Figure 3. User defined functions required to implement a
graph sampling application in NextDoor

4.2 Use Cases

We now present the implementation of several graph sam-
pling algorithms using NextDoor.
node2vecThe node2vec algorithm is a second-order random
walk. Let 𝑣 be transit vertex and 𝑡 be the transit vertex of
the last step. The probability of picking edge (𝑣,𝑢) depends
on hyperparameters 𝑝 and 𝑞, and is determined using three
cases: (i) if 𝑢 = 𝑡 then the probability is 𝑝 , (ii) if 𝑢 ≠ 𝑡 and 𝑢
is a neighbor of 𝑡 then the probability is 1/𝑞, or (iii) if 𝑢 ≠ 𝑡

and 𝑢 is not a neighbor of 𝑡 then the probability is 1. The
next vertex is sampled using rejection sampling, which takes
these parameters as input [38].

Figure 4a presents node2vec in NextDoor. The argument
transits of next contains one transit vertex, since random
walk is an individual transit sampling algorithm. Param-
eters 𝑝 and 𝑞 can be returned by a user-defined function
or added as constants. next performs rejection sampling
(rejection-smpl), the details of which are discussed in [38].
stepTransits returns the vertex added at previous step.
sampleSize returns 1 because we add only one neighbor of
transit at each step. steps returns the length of walk, i.e.,
100.
𝑘-hop neighbors Figure 4d implements GraphSAGE’s 2-
hop neighborhood sampler in NextDoor. stepTransits
returns the vertices added at previous step as transits. next
retrieves the transit vertex for this sample in the transit
variable, and chooses a neighbor of the transit vertex. Since
this is a 2-hop sampling, steps returns 2. GraphSAGE [13]
sets the number of neighbors as𝑚1 = 10 and𝑚2 = 25, as
reflected in sampleSize. MVS [7] is implemented in a similar
way as it obtains 1-hop neighbors of all initial vertices in the
sample.
MultiDimensional RandomWalk Figure 4c implements
this sampling in NextDoor. At each step, stepTransits
returns the transit vertex of a sample by choosing one of the
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1 Vertex next(s, transits , srcEdges , step) {

2 Vertex t = s.prevVertex (2,0);

3 Vector <Edge > tEdges = s.prevEdges (2,0);

4 float p = 2.0, q = 0.5;

5 float maxW = transits [0]. maxEdgeWeight ();

6 return rejection -smpl (transits [0],

7 srcEdges , maxW , t, tEdges , p, q);}

8 int steps () {return 100;}

9 int sampleSize(step) {return 1;}

10 bool unique(int step) {return false ;}

11 SamplingType samplingType ()

12 {return SamplingType :: Individual ;}

13 Vertex stepTransits(step , s, transitIdx)

14 {return s.prevVertex (1, transitIdx );}

(a) node2vec random walk of length 100

1 Vertex next(s, transits , srcEdges , step) {

2 Vertex v = randInt(0, graph.vertices ());

3 for (auto trn : transits)

4 if (trn.hasEdge(v))

5 s.addEdge(step , trn , v);

6 return v;}

7 int steps() {return 5;}

8 int sampleSize(int step) {return 64;}

9 bool unique(int step) {return false ;}

10 SamplingType samplingType ()

11 {return SamplingType :: Collective ;}

12 Vertex stepTransits(step , s, transitIdx)

13 {return s.prevVertex (1, transitIdx );}

(b) Importance Sampling

1 Vertex next(s, transits , srcEdges , step) {

2 int idx = randInt(0, srcEdges.size ());

3 Vertex v = srcEdges[idx];

4 s.roots.replace(transits [0], v);

5 return v;}

6 int steps () {return 100;}

7 int sampleSize(step) {return 1;}

8 bool unique(int step) {return false ;}

9 SamplingType samplingType ()

10 {return SamplingType :: Individual ;}

11 Vertex stepTransits(step , s, transitIdx)

12 {return s.roots[randInt(0,s.numRoots ())];}

(c) Multi Dimensional Random Walk of length 100

1 Vertex next(s, transits , srcEdges , step) {

2 int idx = randInt(0, srcEdges.size ());

3 return srcEdges[idx];}

4 int steps() {return 2;}

5 int sampleSize(int step) {

6 return (step == 0) ? 25 : 10;}

7 bool unique(int step) {return false ;}

8 SamplingType samplingType ()

9 {return SamplingType :: Individual ;}

10 Vertex stepTransits(step , s, transitIdx)

11 {return s.prevVertex (1, transitIdx );}

(d) GrapSAGE’s 2-hop neighbors

Figure 4. Use Cases of NextDoor

root vertices of the sample randomly and next samples a
neighbor and replaces the root vertex with this neighbor.
Importance Sampling In FastGCN [3] and LADIES [44]
every sample includes an adjacency matrix that records the
edges between vertices added in the previous step (the tran-
sit vertices) and the current step. At each step 𝑖 ,𝑚𝑖 vertices
are sampled from the graph according to a probability distri-
bution and these vertices are added to the sample. Figure 4b
implements importance sampling as a collective transit sam-
pling as returned by samplingType. At each step 64 vertices
are sampled. next chooses a vertex of graph according to a
probability distribution and adds an edge between the vertex
and all transits, if it exists. The sampling criteria in [3, 44]
can be added in next. stepTransits returns the vertices
sampled in the last step.
Cluster Sampling ClusterGCN [6] sampling obtains an ad-
jacency matrix between all vertices of one or more clusters.
Figure 4b sketches the implementation where at each step an
edge is recorded in a sample’s adjacency matrix if the edge
exists between any two transits.

5 Paradigms for Graph Sampling on GPUs

This section presents two paradigms for parallel graph sam-
pling. Existing systems for graph sampling [3, 6, 7, 13, 38, 40,
44] use sample parallellism. We discuss its shortcomings on
GPUs and propose an alternative transit parallel paradigm.

5.1 Sample-Parallelism

Graph sampling is an “embarrassingly parallel” problem and
the natural approach to parallelization is to process each sam-
ple in parallel, which we call the sample parallel paradigm.
The approach is analogous to subgraph parallel expansion
in graph mining systems [5, 23, 35]. We now discuss how to
apply this approach toNextDoor’s applications, performing
both individual and collective transit sampling.
Individual Transit Sampling The naive way to implement
sample parallelism for individual transit sampling on GPUs
is to assign a thread to each sample but this limits the amount
of parallelism to the number of samples. NextDoor’s API
enables a new, fine-grained approach to sample parallelism.
At each step 𝑖 , we assign consecutive𝑚𝑖 threads to a pair of
sample and transit. Each thread then calls the user-defined
function (next) on its transit. Since consecutive threads add
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vertices to the same sample, this approach allows writes to
global memory to be coalesced. The algorithm visits samples
and their transits in parallel. Figure 5a shows an example of
sample parallel execution for the second step of Figure 2b.
In this example, each sample is assigned to a thread block
containing four threads. Each thread samples one vertex for
the assigned transit and writes this vertex to the output.
Collective Transit Sampling For collective transit sam-
pling, before calling the next function on the combined
neighborhood of all transits, we need to compute this neigh-
borhood. In a sample parallel approach, the combined neigh-
borhood is computed in the same way as the individual tran-
sit sampling is performed. Consecutive threads are assigned
to each pair of sample and transit, such that these threads
copy the neighbors of one transit to the combined neighbor-
hood, which is stored in global memory. After computing
the combined neighborhood, we assign each pair of sample
and transit to𝑚𝑖 consecutive threads and call next on this
neighborhood.
Limitations Despite the finer-grained approach enabled by
the API, sample parallelism makes poor use of the GPU for
the following reasons. 1) In an individual transit sampling,
for each sample, the algorithm calls next on the neighbors
of several transit vertices in parallel. However, if two threads
in a warp are assigned to process two distinct transit vertices
with different numbers of neighbors, the thread processing
the smaller set of neighbors may stall until the other thread
completes. Thus the algorithm suffers from warp divergence.
Similarly, there is warp divergence when computing the com-
bined neighborhood. 2) The algorithm also suffers from poor
load balancing. The amount of work done by next is likely
to depend on the number of neighbors of the transit vertex.
For example, while computing combined neighborhood in
collective transit sampling, different number of neighbors of
each transit vertex leads to load imbalance within a thread
block. 3) The graph must be stored in global memory, so
accessing neighbors of transit vertex incurs high latency.
Moreover, threads in a block may access the neighbors of
different transit vertices, which leads to no locality. Hence,
the GPU cannot coalesce reads or cache neighbors in shared
memory.

For example, the execution in Figure 5a suffers from both
of the above issues. Since all four threads do not process same
transit, there is divergent control flow and the adjacency list
must be stored in global memory, leading to lack of locality
among all threads of a thread block.

5.2 Transit-Parallelism

To overcome the limitations of sample parallelism,we present
the transit parallel paradigm. Transit parallelism groups all
samples with the same transit vertex and process all sam-
ples for one transit vertex by assigning these samples to

consecutive threads. This approach exposes regularity in
sampling.

At each step the transit parallel paradigmworks as follows.
Before running sampling on the GPU, we create a map of
transit vertices to their samples by grouping all samples
associated with same transit vertex. We assign each transit
vertex to a group of threads, which may be organized as a
grid, thread block, or warp. In individual transit sampling, we
assign each sample to consecutive threads in the group, and
each thread calls next to add one neighbor of the transit to
its sample. Similarly, in collective transit sampling, we create
the combined neighborhood of the transits by assigning
each sample to consecutive threads in the transit group (grid,
thread block, or warp), and consecutive threads in the group
add neighbors of the transit to the combined neighborhood of
the sample. Building the combined neighborhood in a sample-
parallel manner takes a significant portion of execution time.
NextDoor speeds up this step by using the transit parallel
approach. In this case, instead of sampling new vertices from
the neighborhood of each transit of the sample using next,
the system adds the entire neighborhood to the combined
neighborhood. Collective sampling applications then select
new vertices from the combined neighborhood per sample.
Figure 5b shows the execution of the second step of 2-

hop neighbor sampling of Figure 2a in NextDoor using the
transit parallel paradigm. Using load balancing (Section 6),
NextDoor assigns transit 4○ to a grid, such that all thread
blocks in that grid are assigned samples of 4○ and each thread
adds one neighbor of 4○ to one sample of 4○, i.e., either 𝑆1,
𝑆2, or 𝑆3. Similarly, it assigns vertex 1○ to a thread block and
each thread adds one neighbor of 1○ to one of the samples
associated with 1○.
Advantages The transit parallel paradigm has two advan-
tages for both individual and collective transit sampling:
1) contiguous threads perform a similar amount of work,
because each thread calls the next function with same neigh-
bors, and 2) contiguous threads accesses the neighbors of
same transit. Both ensure non-divergent control flow, and lo-
cality of memory accesses. This eliminates warp divergence
and addresses load balancing 2. Moreover, since all threads
work with same neighbors, we can cache the neighbors in
shared memory to speed up later accesses.
For example, in the execution shown in Figure 5b each

transit is assigned to one group of threads and this group
caches the neighbors of each transit vertex in either shared
memory or registers. Furthermore, each thread calls the next
function on the same set of neighbors, which ensures non-
divergent control flow among contiguous threads.

2A badly-written user-defined function may have these issues, but
NextDoor avoids them in the core algorithm.
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Figure 5. Execution of second step for 2-hop neighbor sampling of Figure 2b using Sample Parallelism and Transit Parallelism.

6 Efficient Transit Parallelism on GPUs

NextDoor implements transit parallelism on a GPU, with
CPU-based coordination. We first describe the techniques
that allow NextDoor to execute individual transit sampling
applications efficiently. We then describe how NextDoor
uses the same techniques to execute collective transit sam-
pling applications.

6.1 Sampling in Individual Transit Sampling

In this section, we describe how NextDoor executes indi-
vidual transit applications using transit parallelism.

6.1.1 Leveraging Warp-Level Parallelism. A GPU can
coalesce several global memory accesses together into one
memory transaction only if threads in a warp access con-
secutive addresses. The transit parallel paradigm lends itself
to a GPU implementation that supports coalescing reads to
global memory, by having consecutive threads read the same
adjacency list (i.e., of the shared transit vertex).
However, coalescing writes of new vertices to samples

requires extra care. A two-level transit parallel approach
maps different transit vertices to thread blocks and different
samples to threads. This does not result in coalesced writes,
since threads in the same warp add vertices to different
samples. Instead, NextDoor uses three levels of parallelism:
transits to thread blocks, samples to warps, and a single

execution of the next function to a thread. Thus each thread
writes one vertex to its sample and all threads in the warp
issue one coalesced write to the same sample. Figure 5b
shows this mapping as follows. First, transits 4○, 1○, and 6○
are mapped to a group of threads. Then, samples (S1, S2, S3)
are mapped to subwarps and each thread executes next.
Sub-warps In an ideal scenario, there would be a one-to-
one relationship between warps and samples, which would
ensure that each thread in a warp writes to the same sample,
using a single coalesced transaction to the global memory.
However, there is a fixed number of threads per warp (usu-
ally 32) and this number can sometimes be larger than the
required number of executions of the next function. Instead
of letting threads be idle, NextDoor shares a warp among
several samples. This yields some advantages. Suppose we
share a warp of 32 threads among 4 samples, each having 8
contiguous threads. Then writes to the samples only gener-
ate 4 memory transactions rather than the 32 that we would
obtain by assigning each thread to different sample. This
also does not lead to warp divergence because all threads in
a warp sample neighbors of the same transit vertex.
We use the term sub-warp to refer to a set of contiguous

threads of same warp assigned to same sample. NextDoor
uses sub warps as a fundamental unit of resource scheduling.
All sub warps have the same size, which is determined using
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sampleSize function for the current step. Threads of the
same sub-warp share the information of their registers using
warp shuffles, and coordinate using syncwarp.

6.1.2 Load Balancing. In the transit parallel paradigm,
each transit vertex is associated with a set of samples, which
varies among transit vertices and steps. With three levels of
parallelism, a transit vertex requires as many threads in a
step as the total number of neighbors that will be added to
its samples. Thus we obtain sub-optimal performance if we
always assign a single thread block to each transit vertex. At
the limit, the number of threads required by a transit vertex
may exceed the limit of number of threads in a block. On the
other hand, if a transit vertex only requires a small number
of threads, dedicating an entire thread block to the transit
wastes GPU resources. To address this problem, NextDoor
uses three types of GPU kernel (see Table 2):
1. The sub-warp kernel processes several transit vertices in

a single warp. It is only applicable to transit vertices that
require fewer threads than the warp size (32).

2. The thread block kernel dedicates a thread block to a single
transit vertex. It is only applicable to transit vertices that
require more threads than in a warp, but less than the
maximum thread block size (1,024).

3. The grid kernel processes a single transit vertex in sev-
eral thread blocks. It is only applicable to transit vertex
requires more than 1,024 threads.

Scheduling To assign transits to kernels, NextDoor cre-
ates a scheduling index for each transit vertex. Creating a
scheduling index involves three stages. First, NextDoor cre-
ates a transit-to-sample map based on the transits obtained
from the stepTransits function (Figure 5b). Then, NextDoor
partitions all transit vertices into three sets based on the
number of samples associated with each transit vertex using
parallel scan operations. Finally, the scheduling index of a
transit vertex is set to the index of the transit vertex in its set.
After picking a kernel type for a transit vertex, we assign
each sample of the transit vertex to a sub-warp in the kernel
based on the thread index.
Caching NextDoor uses different caching strategies for
different kernels to minimize memory access costs. When
sampling neighbors of transit vertices in the grid and thread
block kernels, the thread blocks for these kernels load the
neighbors of transit vertices into shared memory. However,
when the neighbors do not fit in shared memory, NextDoor
transparently loads neighbors from global memory. For tran-
sit vertices assigned to a sub-warp, NextDoor utilizes both
shared memory and thread local registers to store neigh-
bors. In this case,NextDoor transparentlymanages accesses
to the neighbor list using warp shuffle instructions that al-
lows consecutive threads to read neighbors from each others’
registers. In summary, NextDoor uses the fastest caching
mechanisms available for each kernel.

6.2 Transit-Parallel Collective Transit Sampling

Collective transit sampling applications require computing
the combined neighborhood of all the transits of each sample.
This is a potential performance bottleneck, so NextDoor
uses transit parallelism to speed up the process. It constructs
the combined neighborhood as if it were an individual transit
sampling application that runs for only one step. Instead of
sampling new vertices from the neighborhood of one transit,
NextDoor adds all the vertices in the neighborhood to the
combined neighborhood of the sample. After building a sin-
gle combined transit neighborhood per sample, one could
in principle detect which samples have the same combined
neighborhoods and expand all these samples in a transit-
parallel manner. The likelihood of two combined neighbor-
hood being equal, however, is generally low, and detecting
which samples have the same combined neighborhood is
expensive. Therefore, NextDoor adds new vertices to the
sample using a sample-parallel approach.

6.3 Unique Neighbors

Certain applications, require all sampled neighbors from
all transit vertices to be unique. After sampling at each step
NextDoor removes duplicated sampled vertices by first sort-
ing them with a parallel radix sort, and then getting distinct
vertices using parallel scan. If sampled neighbors fit in the
shared memory then NextDoor performs this computation
by assigning one sample to one thread block, otherwise one
kernel is called for each sample. After this process if the sam-
ple size is less than the stepSize, then NextDoor performs
sampling using a sample-parallel approach instead of the
transit-parallel one.

6.4 Graph Sampling using Multiple GPUs

NextDoor utilizes the embarrassingly parallel nature of
graph sampling to parallelize graph sampling over multiple
GPUs in the following way. First NextDoor distributes sam-
ples equally among all GPUs. Then, NextDoor performs
load balancing and scheduling and calls the sampling kernels
on each GPU independently. Finally, it collects the output
from all GPUs.

6.5 Integration in GNNs using Python API

NextDoor provides Python 2 and 3modules that can be used
to do sampling fromwithin a GNN. For this, users first define
NextDoor API functions, then call doSampling function to
do transit-parallel sampling, and finally call getFinalSamples
to obtain samples in a numpy.ndarray.

6.6 Advantages of NextDoor’s API

Expressing a graph sampling application using NextDoor’s
API provides several advantages. It describes sampling op-
erations in a fine-grained manner, which enables using the
execution hierarchy of the GPU more efficiently with both
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Kernel Total neighbors to sample Caching Strategy Neighbor Access Strategy Transit Scheduling Strategy
Grid Greater Than 1024 Shared Memory Memory Loads One transit to many thread blocks
Thread Block Between 32 and 1024 Shared Memory Memory Loads One transit to one thread block
Sub-Warp Less than 32 Registers Warp Shuffles One transit to one sub-warp

Table 2. Types of kernels used to process transit vertices based on the number of neighbors to sample for the transit vertex.

sample and transit parallelism. NextDoor’s API is general
purpose and supports different kinds of graph sampling appli-
cations, while existing systems either running specific graph
sampling applications [3, 6, 10, 13, 40, 44] or only support
expressing specific kinds of graph sampling applications,
as for example random walks for KnightKing [38]. Further-
more, NextDoor’s API requires applications to explicitly
indicate which vertices in each sample are transit vertices.
This distinction is critical to enable transit parallelism. Fi-
nally, the API requires applications to explicitly state the
number of vertices that must be sampled at each step. This
information is used by NextDoor to effectively load balance
computation across the execution hierarchy of the GPU.

7 Alternative Graph Processing Systems

Abstractions provided by existing GPU based graph process-
ing systems to implement graph algorithms can be divided
into two types: (i) Message Passing and (ii) Frontier Centric.
We now study the implementation of graph sampling using
both abstractions and discuss why these implementations
provides sub-optimal performance.
Message-passingAbstraction is provided by several graph
computation frameworks [9, 17, 22, 26, 31], where each ver-
tex is associated with a local state and a vertex can send
messages to its neighbors. Upon receiving messages, vertices
update their state and can send newmessages. Graph compu-
tations written in this abstraction advances the computation
by exchanging messages between vertices at each step.
A transit-parallel approach for graph sampling imple-

mented using message passing works in the following way.
First, in each step for each sample associated with a transit,
neighbors of the transit are sampled. Then, the stepTransits
function is called to retrieve transit for next step and the
associated samples are send to the transit in the form of
messages. Each transit vertex is associated with only one
thread, which processes all its samples sequentially.
Frontier-centric Abstraction is provided by Gunrock [37],
which exploits the property that after any step of a graph
computation, a set of frontier vertices are produced for the
next step of the computation. The Advance operator in this
abstraction defines the computation and generates a new
frontier by assigning one thread to each neighbor of each
vertex in the input frontier.

A transit-parallel approach for graph sampling can be im-
plemented in this abstraction as follows way. The Advance
operator contains the user-defined sampling criteria, which

is invoked on each neighbor of the transit vertex. This op-
erator will decide whether the neighbor should be added to
the sample. In that case, stepTransits is called to retrieve
the transit vertex for the sample and the transit vertex is
added to the new frontier. Each thread for a neighbor must
make this decision for all the associated samples, which are
processed sequentially.
Limitations over NextDoor Graph processing systems
providing above abstractions suffers from two fundamen-
tal issues. First, these systems only consider one degree of
parallelism, i.e., all transit vertices can be processed in paral-
lel but samples for each transit are processed sequentially.
This is because these systems are designed for traditional
graph computations, such as Breadth First Search, Connected
Components, etc., which only has one degree of parallelism.
Second, these systems balances the load based on the number
of neighbors for each vertex because all neighbors of each
vertex are visited in a traditional graph processing applica-
tion. But, in a graph sampling number of neighbors to sample
at a step can be significantly less than the neighbors of a
transit vertex. Hence, NextDoor takes a different approach
from existing system to solve these issues. Section 8.3 shows
that NextDoor performs better than these systems.

8 Evaluation

We implemented NextDoor in NVIDIA CUDA 11.2.
Benchmarks We use the graph sampling applications men-
tioned in Section 4 as benchmarks for our evaluation. We
set applications’ parameters as follows. For PPR the termina-
tion probability is set to 1/100, i.e., mean length is 100. For
all other random walks, we set the walk length to 100. For
node2vec we set 𝑝 to 2.0 and 𝑞 to 0.5. For these random walks,
initially there is one vertex per sample. ForMultiDimensional
Random Walk (MultiRW), we set 100 root vertices per sam-
ple. We use GraphSAGE [13]’s hyperparameters for k-hop
Neighborhood Sampling, i.e., 𝑘 = 2,𝑚1 = 25, and𝑚2 = 10. For
Layer Sampling we set final sample size to 2000 and step size
for all steps to 1000. For FastGCN, LADIES, and MVS Sam-
pling batch size and step size are set to 64. For ClusterGCN
Sampling we randomly assigned vertices in clusters and each
sample contains 20 clusters.
Datasets Table 3 lists the details of real world graphs used
in our evaluation obtained from Stanford Network Analysis
Project [18]. We generate a weighted version of these graphs
by assigning weights to each edge randomly from [1, 5).
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Name Abrv # of Nodes # of Edges Avg Degree
Protein-Protein PPI 50K 1.4M 28.0
Interactions
com-Orkut Orkut 3M 117M 39.0
cit-Patents Patents 3.77M 16.5M 4.37
soc-LiveJournal1 LiveJ 4.8M 68.9M 14.3
com-Friendster FriendS 65.6M 1.8B 27.4

Table 3. Graph used in our evaluation.

Experimental setupWe perform experiments on a system
containing two 16-core Intel Xeon(R) Silver 4216 CPU, 128
GB RAM, and an NVIDIA Tesla V100 GPU with 16GB mem-
ory running Ubuntu 18.04. We report the average time of 10
executions. We report the execution time spent on the GPU,
which includes the time spent in sampling and creating the
scheduling index. Since transferring graphs to the GPU that
fits inside the GPU memory takes only few milliseconds (less
than 5% of total execution time), we do not consider these
times in the total execution time unless specified otherwise.

8.1 Execution Time Breakdown

The execution time of an application in NextDoor consists
of the time spent in sampling and creating the scheduling
index. NextDoor builds the scheduling index by sorting
the samples based on the neighbors in each sample as keys
and then dividing the transit vertices into three sets based
on the number of samples for each transit, using parallel
scan. Figure 6 shows the time spent in both phases as a frac-
tion of the total execution time. The time spent in building
scheduling index ranges from 5% of the total time in Clus-
terGCN for sampling LiveJ graph to 40.4% of the total time in
DeepWalk for sampling Orkut graph. Random walks spend
a higher fraction of time building the scheduling index. This
is because they sample only a single vertex per step, leading
to fewer common samples and less work per transit than
other applications. NextDoor uses parallel radix sort and
parallel scan of NVIDIA CUB [1] to create the scheduling in-
dex efficiently. With more efficient implementations of these
algorithms [34] available for GPUs, we expect this time to
decrease significantly in future.

8.2 Graph Sampling Performance

We compare NextDoor with the following systems.
SP NextDoor is the first system for graph sampling on
GPUs. Since we cannot compare it with other systems, we
implemented an optimized sample-parallel graph sampling
system based on the NextDoor API, which we refer to as
SP. We implemented all the optimizations of NextDoor that
could be adapted to a sample-parallel system, such as load
balancing, scheduling, and the fine-grained parallelism dis-
cussed in Section 5.1. The purpose of SP is to evaluate the

benefits of transit-parallelism in isolation, without consider-
ing all the other optimizations enabled by the new API.

Since TensorFlow based reference implementation of layer
sampling [10] does not support the datasets used in evalua-
tion and the implementation follows sample-parallel para-
digm, we use SP as a baseline in layer sampling.
TPTo show the performance improvement due toNextDoor’s
load balancing and scheduling optimizations described in
Section 6, we compare against vanilla transit-parallel ap-
proach (see Section 5.2), which assigns each transit and sam-
ple pair to𝑚𝑖 consecutive threads. We refer to this imple-
mentation as TP.
KnightKing KnightKing [38] is a state of the art system for
doing random walks using CPUs. It uses rejection sampling
as a technique to select new vertices of a random walk and
supports sampling using distributed systems. Its API restricts
expressing only random walks, hence, we use the system as
a baseline only for random walks.
Existing GNN SamplersWe compare against the samplers
of existing GNNs. These samplers are written for Tensor-
Flow or numpy and are designed to run only on multi-core
CPUs, not GPUs. This is because sampling is an irregular
computation that is more easily implemented on CPUs. For
𝑘-hop neighborhood, we compare against GraphSAGE’s sam-
pler [13]. For MultiRW, we compare against GraphSAINT’s
sampler [40]. For sampling algorithms in FastGCN [3], Clus-
terGCN [6], MVS [7], and LADIES [44], we compare against
samplers in their reference implementations.
PerformanceResultsNextDoor provides an order ofmag-
nitude speedup over KnightKing (Figure 7a) for all random
walk applications, with speedups ranging from 26.1× to 50×.
NextDoor provides an order of magnitude speedup over
the implementations of existing GNNs (Figure 7b). These
large speedups are possible due to the massive parallelism
and memory access latency hiding capabilities of the GPU.
Furthermore, SP is significantly faster than all baselines.
NextDoor provides significant speedups over SP on all

graph sampling applications, with speedups ranging from
1.09× to 6×. The speedup depends significantly on the ap-
plication. For example, NextDoor obtains more speedup in
DeepWalk and PPR than in node2vec because in node2vec at
each step, for an edge from current transit vertex 𝑣 to a ver-
tex 𝑢, the algorithm might do a search over the edges of the
previous transit vertex 𝑡 to check if 𝑢 is a neighbor of 𝑡 , lead-
ing to memory accesses and warp divergence. Nevertheless,
NextDoor still obtains speedup due to its transit-parallel
paradigm. NextDoor achieves speedup over SP in all appli-
cations because NextDoor uses three levels of parallelism
while SP can use only two levels of parallelism. Moreover,
with FastGCN and LADIES, NextDoor is faster because it
speeds up the computation of the combined neighborhood.
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(c) Speedup on graph sampling applications over SP and TP.

Figure 7. Speedup of NextDoor on graph sampling applications and real world graphs over baselines.

NextDoor significantly improves performance over TP
due to better load balancing and scheduling. TP is competi-
tive to SP in random walks even though significant time is
spent in map inversion because TP caches the neighbors in
shared memory. TP outperforms SP in other applications be-
cause caching neighbors in shared memory decreases mem-
ory access time when sampling many neighbors.

8.2.1 NextDoor’s Effectiveness over SP. To explain
NextDoor’s effectiveness over SP, we obtained values of L2

Cache Read Transaction performance metrics using nvprof.
This metric represents the total number of L2 cache load
transactions in the entire execution. Figure 8 shows the value
of this metrics for NextDoor relative to SP. NextDoor per-
forms a fraction of the transactions of SP because it per-
forms coalesced reads and caches edges of transit vertices in
shared memory and registers. ClusterGCN, MVS, FastGCN,
and LADIES sampling perform a similar number of loads
and stores as 𝑘-hop and Layer sampling.
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Figure 8. Value of different L2 Cache Load Transactions
metric for several applications in NextDoor relative to SP.

Dataset Store Multiprocessor Activity(%)
Efficiency(%)
𝑘-hop Layer DW PPR n2v 𝑘-hop Layer

PPI 98.5 98.5 67.8 69.8 70.1 100 100
Orkut 99.5 100 98.3 98.0 99.3 100 100
Patents 100 100 90.1 99.0 99.0 100 100
LiveJ 100 100 99.2 98.2 97.6 100 100

Table 4.Global Memory Store Efficiency and Multiprocessor
Activity in NextDoor. (DW is short for DeepWalk and n2v
is short for node2vec)

8.2.2 NextDoor’s Efficiency. We present absolute val-
ues of two performance metrics in Table 4 obtained using
nvprof: (i)GlobalMemory Store Efficiency to showNextDoor’s
effectiveness to do efficient global stores, and (ii) Multipro-
cessor Activity to show NextDoor’s effectiveness in fully
utilizing GPU’s execution resources.
Global Memory Store Efficiency is the ratio of extra store
transactions over the ideal number of transactions to the
ideal number of transactions. Hence, higher efficiency is
better. NextDoor performs fully efficient global memory
stores because of the sub-warp execution. Since ClusterGCN,
MVS, FastGCN, and LADIES sampling perform number of
loads and stores similar to 𝑘-hop and Layer sampling, we
found similar store efficiency for these applications.
Multiprocessor Activity is the average usage of all SMs
over the entire execution of the application. For PPI, Multi-
processor Activity is low because PPI is a small graph and not
enough threads are generated to fully utilize all SMs. For all
graphs NextDoor fully utilizes all SMs. Hence, NextDoor’s
load balancing strategy balances load across all SMs. We
found similar results for other sampling applications.

8.3 Alternative GPU-Based Abstractions

We also compare NextDoor with two state-of-the-art graph
processing frameworks: Gunrock [37] and Tigr [26], which
follow the frontier-centric and message-passing abstractions,
respectively (see Section 7). Figure 9 reports the speedup of
NextDoor. As explained in Section 7, low parallelism and
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Figure 9. Speedup of NextDoor over Tigr and Gunrock on
some graph sampling applications and real world graphs.

poor load balancing due to the mismatch between graph
sampling and graph processing abstraction result in speedup.
We found similar results on other applications.

8.4 Sampling Large Graphs

We evaluate a simple approach for sampling large graphs.
NextDoor can sample graphs that do not fit in GPU mem-

ory by creating disjoint sub-graphs, such that each of these
sub-graphs and its samples be allocated in the GPU memory.
After creating these sub-graphs at each computation step,
NextDoor performs sampling for each sample by transfer-
ring all sub-graphs containing the transit vertices of each
sample to the GPU. In this experiment, we consider the time
taken to transfer graph from CPU to GPU.
We evaluate this approach by executing 𝑘-hop and ran-

dom walks on the FriendS graph, which does not fit in the
GPU memory. For 𝑘-hop neighborhood and layer sampling,
NextDoor is the only system in our experiments that can
sample a graph of that size. NextDoor gives a throughput
of 3.3×106 samples per second on 𝑘-hop and 2×106 on layer
sampling. Both applications are computation bound and not
memory transfer bound. For random walks, KnightKing is
the only baseline that can perform the sampling because it
is CPU based. NextDoor performs worse than KnightKing
for random walks where the computation load is low: it pro-
vides about 1/2 of the throughput with DeepWalk and PPR.
However, in node2vec where the computation time is larger,
NextDoor gives 1.50× speedup over KnightKing.

In summary, NextDoor is able to sample graphs that do
not fit in GPU memory, and can outperform state-of-the-
art systems when the graph sampling application performs
significant amount of computation. We plan to improve the
support for large graphs in NextDoor as future work.

8.5 Sampling on Multiple GPUs

We used NextDoor to perform sampling on four NVIDIA
Tesla V100 GPUs. Figure 10 presents the speedup of sam-
pling using four GPUs over single GPU. Multi-GPU sampling
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Figure 10. Speedup of sampling using 4 GPUs over 1 GPU.

PPI Reddit Orkut Patents LiveJ
GraphSAGE 1.30× 1.21× OOM 1.20× 1.22×
FastGCN 1.25× 1.52× 4.75× 2.3× 4.31×
LADIES 1.07× 1.37× 2.27× 2.1× 2.34×

ClusterGCN 1.03× 1.20× OOM 1.4× 1.51×
Table 5. End-to-end speedups after integrating NextDoor
in GNNs over vanilla GNNs.

achieves significant speedup over single GPU on several ap-
plications. Random walks achieves significant speedup in
all graphs except PPI because PPI is a small graph. On the
other hand, 𝑘-hop neighbors achieves almost full scaling
even in small graph like PPI because it increases the number
of transit vertices exponentially at each step. In summary,
NextDoor is able to utilize multiple GPUs efficiently.

8.6 End-to-End Integration in GNN Systems

We performed an end-to-end evaluation of existing GNNs by
replacing their sampler with the sampling implementation in
NextDoor. Table 5 shows the performance improvement of
our integration. The speedup for GraphSAGE is less than the
maximum possible improvement in Table 1 due to a limita-
tion of Tensorflow, which does not allow creating a tensor on
the GPU memory. Therefore, samples are copied to the CPU
and then again to the GPU for training. For FastGCN and
LADIES, the speedup increases with larger graphs because
the sampling time depends on the number of vertices in the
graph, while the training time per batch remains constant.
SinceNextDoor provides significant speedup over samplers
in GraphSAINT and MVS, we believe NextDoor integration
will improve training time.

9 Related Work

We now discuss related work beyond KnightKing, Gunrock,
and Tigr, which we discussed in Sections 7 and 8.
Message-passing graphprocessingThere are several graph
processing systems that provide a message-passing abstrac-
tion that run on CPUs [11, 20, 22, 25, 33, 42, 43] and GPUs [9,
17, 26, 31, 41]. Our evaluation shows that NextDoor out-
performs Tigr [26] on graph sampling tasks (Section 8).

Medusa [41]was the first GPU-based graph processing frame-
work to provide a message passing abstraction. CuSha [17]
and MapGraph [9] provide a Gather And Scatter (GAS) ab-
straction. CuSha uses a parallel sliding-window graph repre-
sentation (“G-Shards”) to avoid irregular memory accesses.
Subway [31] splits the large graphs that do not fit in GPU
memory into sub-graphs and optimizes memory transfers
between CPU and GPU. Shi et al [32] present an extensive
review of systems for graph processing on GPUs. Power-
Lyra [4] uses different computations on vertices based on
their degree.
Frontier-centric graph processing SIMD-X [19] extends
the frontier abstraction of Gunrock [37], but these extensions
are not relevant for graph sampling.
Graph mining Graph mining systems follow a subgraph-
parallel paradigm that is analogous to sample-parallelism [2,
5, 8, 15, 23, 29, 35, 36]. However, even the sample-parallel
sampling algorithm of Section 5 introduces optimizations
that are specific to the graph sampling abstraction of Sec-
tion 3 and do not generalize to graph mining problems. 1) In
graph sampling the number of samples is fixed, whereas
graph mining problemmay involve exploring an exponential
number of subgraphs. 2) sampling adds a constant number
of new vertices to each sample at each step. This makes it
possible to associate new vertices to threads at scheduling
time, before visiting the graph. 3) Sampling has a notion of
transit vertices. NextDoor leverages all these features.

10 Conclusion

We show that efficient graph sampling on GPUs is non-trivial.
Existing sampling and graph processing systems do not
provide the right abstractions to efficiently support several
graph sampling algorithms on GPUs. We introduce transit-
parallel sampling, a new paradigm for graph sampling that
is amenable to an efficient GPU implementation. We present
NextDoor, a system that implements transit-parallel sam-
pling for GPUs to provide regular memory access and com-
putation, and a high-level API to express several graph sam-
pling applications. We show that NextDoor is significantly
faster than the existing systems on several applications.
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