
PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu∗, Matt Youill‡, Matthew Woicik†, Abdurrahman Ghanem§,
Marco Serafini¶, Ashraf Aboulnaga§, Michael Stonebraker†
∗University of Wisconsin-Madison †Massachusetts Institute of Technology

‡Burnian §Qatar Computing Research Institute ¶University of Massachusetts Amherst

Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem@hbku.edu.qa,

marco@cs.umass.edu, aaboulnaga@hbku.edu.qa, stonebraker@csail.mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analytics queries into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently released capability
called S3 Select. We show that some DBMS primitives (filter,
projection, and aggregation) can always be cost-effectively moved
into S3. Other more complex operations (join, top-K, and group-
by) require reimplementation to take advantage of S3 Select
and are often candidates for pushdown. We demonstrate these
capabilities through experimentation using a new DBMS that we
developed, PushdownDB. Experimentation with a collection of
queries including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7× faster than a baseline that does
not use S3 Select.

I. INTRODUCTION

Clouds offer cheaper and more flexible computing than

“on-prem”. Not only can one add resources on the fly, the

large cloud vendors have major economies of scale relative to

“on-prem” deployment. Modern clouds employ an architecture

where the computation and storage are disaggregated — the

two components are independently managed and connected

using a network. Such an architecture allows for independent

scaling of computation and storage, which simplifies the

management of storage and reduces its cost. A number of data

warehousing systems have been built to analyze data on dis-

aggregated cloud storage, including Presto [1], Snowflake [2],

Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects

the computation and storage layers can be a major performance

bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data

from the remote storage and caches it in main memory or local

storage, amortizing the network transfer cost. Caching has

been implemented in Snowflake [2] and Redshift Spectrum [3],

[4]. With computation pushdown, a database management

system (DBMS) pushes its functionality as close to storage

as possible. Previous research [5] and systems (e.g., Britton-

Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza

machine [8]) have shown that this can significantly improve

performance.

Recently, Amazon Web Services (AWS) introduced a fea-

ture called “S3 Select”, through which limited computation

can be pushed onto their shared cloud storage service called

S3 [9]. This provides an opportunity to revisit the question of

how to divide query processing tasks between S3 storage nodes

and normal computation nodes. The question is nontrivial as

the limited computational interface of S3 Select allows only

certain simple query operators to be pushed into the storage

layer, namely selections, projections, and simple aggregations.

Other operators require new implementations to take advan-

tage of S3 Select. Moreover, S3 Select pricing can be more

expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance

of computation pushdown when running queries in a cloud

setting with disaggregated storage. Specifically, we consider

filter (with and without indexing), join, group-by, and top-K

as candidates. We implement these operators to take advan-

tage of computation pushdown through S3 Select and study

their cost and performance. We show dramatic performance

improvement and cost reduction, even with the relatively high

cost of S3 Select. In addition, we analyze queries from the

TPC-H benchmark and show similar benefits of performance

and cost. We point out the limitations of the current S3 Select

service and provide several suggestions based on the lessons

we learned from this project. To the best of our knowledge,

this is the first extensive study of pushdown computing for
database operators in a disaggregated architecture. A more

detailed description of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of

computing instances (i.e., EC2: Elastic Compute Cloud) and

storage services (i.e., EBS: Elastic Block Store, EFS: Elastic

File System, and S3: Simple Storage Service). Compared to

other storage services, S3 is a highly available object store

that provides virtually infinite storage capacity for regular

users with relatively low cost, and is supported by many

popular cloud databases, including Presto [1], Hive [11], Spark

SQL [12], Redshift Spectrum [3], and Snowflake [2]. The

storage nodes in S3 are separate from compute nodes. Hence,

a DBMS uses S3 as a storage system and transfers needed

data over a network for query processing.

To reduce network traffic and the associated processing

on compute nodes, AWS released a new service called S3
Select [9] in 2018 to push limited computation to the storage

nodes. At the current time, S3 Select supports only selection,

1802

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00174

projection, and aggregation without group-by for tables using

the CSV or Parquet [13] format; the storage nodes scan rows

in the table and return only qualifying rows to the compute

node.

Storage $0.022/GB/month
Data transfer free within same region; $0.09/GB out of AWS
S3 Select scan: $0.002/GB; return: $0.0007/GB
Network request $0.0004 per 1000 requests
Computation $2.128 per hour (r4.8xlarge)

TABLE I: S3 query cost breakdown (region us-east-1).

The dollar cost of queries is a crucial factor, since it is

one of the main reasons to migrate an application from “on-

prem” to the cloud. Table I shows the typical value of five

cost components when using S3. Since the storage cost does

not depend on the frequency of access, we exclude it when

calculating query cost in this paper. Servers in our experiments

are within the same region as the S3 data. Therefore, we do

not pay any data transfer cost. The S3 Select cost is paid

based on the amount of data scanned and returned only when

S3 Select is used. Network requests cost are charged by the

number of HTTP requests; computation cost is charged based

on the instance type and how long the virtual machine runs.

Data scan and transfer and computation are typically the major

components in overall query cost for S3 Select.

A. PushdownDB

In order to explore how a database can leverage S3 Select

to improve performance and/or reduce cost, we implemented

a bare-bone row-based parallel DBMS testbed, called Push-
downDB. PushdownDB represents a query plan as a directed

acyclic graph of operators and executes in a pipelined fashion

using multiple Python processes. A few performance optimiza-

tions are implemented, including disabling SSL as we expect

analytics workloads are typically run in a secure environment

and using the Pandas library [14] to represent tuples as

data frames. While we could not match the performance of

the more mature Presto system on all queries, we obtained

competitive performance. The source code of PushdownDB is

available on GitHub at https://github.com/yxymit/s3filter.git,

and is implemented in a mixture of C++ and Python.

Experimental Setup. Experiments in this paper are per-

formed on an r4.8xlarge EC2 instance, which contains 32

physical cores, 244 GB of main memory, and a 10 GigE net-

work. The machine runs Ubuntu 16.04.5 LTS. PushdownDB
is executed using Python version 2.7.12.

Unless otherwise stated, all experiments use the same 10 GB

TPC-H dataset in CSV format. To facilitate parallel processing,

each table is partitioned into multiple objects in S3. The tech-

niques discussed in this paper do not make any assumptions

about how the data is partitioned.

III. SQL OPERATORS IN S3 SELECT

This section discusses how PushdownDB accelerates SQL

operators using S3 Select. Specifically, we discuss four oper-

ators: filter, join, group by, and top-K.

A. Filter

Both hash indexes and tree-based indexes are widely used

in database systems. Neither implementation, however, is a

good fit for a cloud storage environment because a single index

lookup requires multiple accesses to S3 incurring long network

delays. To avoid this problem, we designed an index table that

contains the values of the columns to be indexed, as well as

the byte offsets of indexed records in that table. Specifically,

an index table has the following schema (assuming the index

is built on a single column).

|value|first_byte_offset|last_byte_offset|

Accessing an indexed table comprises two phases. In phase

1, an S3 Select request with the lookup predicate is used to

retrieve the byte offsets from the index. In phase 2, the returned

byte offsets are used to directly load the corresponding rows

from the data table, by sending regular S3 requests for

individual rows.

selectivity=10−5 selectivity=10−3

Time Cost Time Cost
Server-side 21.7s 1.3c 21.3s 1.3c
S3-side 1.38s 1.5c 1.82s 1.6c
Indexing 1.74s 0.4c 10.7s 3.4c

TABLE II: Runtime and cost of filter algorithms.

Table II shows the runtime and cost of different filtering

algorithms for two selectivities, 10−5 and 10−3. Server-side

filter loads all the data from S3 into the compute node and

performs the filter there. S3-side filter pushes the predicate to

S3 using S3 select. S3-side filter is 10× faster than server-side

filter with a small increase in cost. S3-side indexing has similar

performance as S3-side filter but 4× lower price when the filter

is highly selective; the performance of indexing degrades when

the filter is less selective due to the cost of S3 requests for

individual rows.

B. Join

PushdownDB supports three hash join algorithms: Baseline
Join, Filtered Join, and Bloom Join. Baseline join performs the

query logic in the compute node without S3 Select. Filtered

join pushes down selection and projection using S3 Select to

the storage side. In the following we focus on Bloom join.

After the hash build phase, a Bloom filter is constructed based

on the join keys in the first table and is sent as an S3 Select

request to load a filtered version of the second table.

The Bloom filter [15] in PushdownDB contains a bit array
of length m and k different hash functions. To add an element,

the k hash functions are applied to the element. The output

of each hash function is a position in the bit array, which is

then set to 1. To query an element, the same k hash functions

are applied and the element may be in the set if all the

corresponding bits are set. We use universal hashing [16] to

implement our hash functions, which can be generalized as:

ha,b(x) = ((a× x+ b) mod n) mod m

1803

Where n is a prime ≥ m. a and b are random integers

between 0 and n− 1, where a �= 0.

In order to push the Bloom filter logic into S3, in Push-
downDB, we use strings of 1’s and 0’s to represent the bit

array. The following example shows what an S3 Select query

containing a Bloom filter would look like.

SELECT ...
FROM S3Object
WHERE SUBSTRING(’1000011...111101101’,

((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1) = ’1’

We evaluate the performance of different join algorithms

using the following SQL query. We change upper_bal to

vary selectivity on the CUSTOMER table. The false positive

rate for the Bloom filter is 0.01.

SELECT SUM(O_TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE O_CUSTKEY = C_CUSTKEY AND

C_ACCTBAL <= upper_bal

upper bal=-950 upper bal=-450
Time Cost Time Cost

Baseline join 14.5s 0.86c 14.8s 0.88c
Filtered join 13.7s 1.3c 13.9s 1.3c
Bloom join 2.7s 0.54c 10.6s 1.03c

TABLE III: Runtime and cost of join algorithms.

Table III shows the runtime and cost of different join

algorithms for two selectivities on the customer table. Baseline

and filtered joins perform similarly since they only apply

selection to the smaller customer table and load the entire

orders table, incurring a similarly large amount of network

traffic. Bloom join achieves higher performance and lower cost

than either as the high selectivity on the customer table is

encapsulated by the Bloom filter, which significantly reduces

the number of returned rows for the larger orders table. As the

predicate on the customer table becomes less selective, Bloom

join’s performance degrades as fewer records can be filtered.

C. Group-By

The current S3 Select supports simple aggregation on indi-

vidual attributes but not with a group-by clause. This section

explores S3-side Group-by and compares it to Server-side
Group-by and Filtered Group-by. S3-side group-by pushes the

group-by logic entirely into S3 and thus minimizes the amount

of network traffic. The execution contains two phases.

The first phase runs a projection using S3 Select to load

columns in the group-by clause. The compute node then col-

lects the unique values in the grouping columns. In the second

phase, PushdownDB uses S3 Select to perform aggregation

for each individual group that the first phase identified. The

following SQL code shows such an example:

SELECT sum(CASE WHEN c_nationkey = 0
THEN c_acctbal ELSE 0 END),

sum(CASE WHEN c_nationkey = 1
THEN c_acctbal ELSE 0 END)

...
FROM customer;

Table IV shows the runtime and cost for different group-by

algorithms. We use a synthetic 10 GB table with 20 columns.

2 groups 8 groups 32 groups
Time Cost Time Cost Time Cost

Server-side 63.3s 3.7c 64.5s 3.8c 65.1s 3.8c
Filtered 39.6s 4.6c 39.6s 4.6c 39.5s 4.6c
S3-side 9.6s 4.6c 31.7s 5.9c 103.3s 10.1c

TABLE IV: Runtime and cost of group-by algorithms.

The first 10 columns contain group IDs with varying number

of groups of uniform size; the other 10 columns contain

floating point numbers and are the fields to be aggregated.

The performance of server-side and filtered group-by (which

pushes projections using S3 Select) does not change with the

number of groups, because both algorithms must load all the

rows from S3 to the compute node.

S3-side group-by performs 4.1× better than filtered group-

by when there are only a few unique groups. Performance

degrades, however, when more groups exist. This is due to

the increased computation overhead that is performed by the

S3 servers. Although the three algorithms have relatively high

variation in their runtime numbers, the cost numbers are

relatively close until the number of group is large, where the

compute cost of S3-side group-by increases significantly.

D. Top-K

Top-K selects the maximum or minimum K records from

a table according to a specified expression. In this section,

we discuss a sampling-based approach that improves the

efficiency of top-K using S3 Select. The algorithm runs in

two phases:

The first phase loads a random sample of S (> K)

records from the table and uses the Kth smallest value as the

threshold. In the second phase, the algorithm uses S3 Select to

load all records below the threshold and uses a heap to select

the top K.

Assume each row contains B bytes, the table contains N
rows, and only a fraction (α ≤ 1) of a record is needed during

the sampling, which is uniformly random. The total number

of bytes loaded from S3 during the two phases are:

D1 = αSB D2 = KNB/S

The total amount of data loaded from S3 (D = D1 +D2)

achieves its lowest value of 2B
√
αKN when S =

√
KN
α .

K=1 K=102 K=104

Time Cost Time Cost Time Cost
Server-side 44.1 2.61c 46.0 2.72c 54.6 3.23c
S3-side 2.64 1.6c 3.20 1.65c 6.62 1.87c

TABLE V: Runtime and cost of top-K algorithms.

Table V compares the performance of the sampling-based

top-K with the baseline that loads the entire table and performs

top-K at the server side. K is swept from 1 to 104. For

the sampling-based algorithm, the sample size is calculated

following the analysis above. We observe that both runtime

and cost increase as K increases. This is because a larger K
requires a bigger heap and also more computation at the server

1804

(a) Runtime

(b) Cost

Fig. 1: Performance and cost of various queries on PushdownDB.

side. The sampling-based top-K algorithm is consistently faster

than the server-side top-K due to the reduction in the amount

of data loaded from S3.

E. TPC-H Results

Figure 1 shows the performance and cost of representative

queries for each individual operator discussed above, as well as

a subset of the TPC-H queries. We compare the performance

of server-side execution (baseline) vs. computation pushdown

using S3 Select (optimized). The last set of bars shows the geo-

metric mean of all the previous bars. On average, the optimized

PushdownDB outperforms the baseline PushdownDB by 6.7×
and reduces the cost by 30%, demonstrating great performance

potential of computation pushdown in cloud databases.

IV. LIMITATIONS OF S3 SELECT

We have demonstrated substantial performance improve-

ment on common database operators by leveraging S3 Select.

In this section, we present a list of limitations of the current S3

Select features and describe our suggestions for improvement.

Suggestion 1: Multiple byte ranges for GET requests.
The indexing algorithm discussed in Section III-A sends an

HTTP GET request to load each record from the table, causing

an excessive number of GET requests and thus performance

degradation. Allowing a single GET request to contain multi-

ple byte ranges can mitigate the problem.

Suggestion 2: Index inside S3. A more thorough solution

to the problem above is to build the index structure inside S3.

This can avoid multiple network messages between S3 and the

server which can improve performance.

Suggestion 3: More efficient Bloom filters. Ideally, a

Bloom filter should be represented using a bit array for space

efficiency. Since the current S3 Select does not support bit-

wise operators, PushdownDB implements a Bloom filter using

a string of 0’s and 1’s, which is space- and computation-

inefficient. We suggest adding bit-wise operators to S3 Select.

Suggestion 4: Partial group-by. In Section III-C, we used

the inefficient CASE clause to implement S3-side group-by,

because group-by is currently not supported in S3 Select.

Adding full support of group-by may lead to unbounded

memory consumption in the storage node. We suggest adding

partial group-by (with limited groups) to S3 to resolve this

performance issue.

Suggestion 5: Computation-aware pricing. Across our

evaluations on the optimized PushdownDB, data scan costs

dominate a majority of queries. The current S3 Select charges

scanning with a fixed amount regardless of the computation

being performed. We believe a fairer pricing model is needed,

in which the data scan cost should depend on the workload.

REFERENCES

[1] “Presto,” https://prestodb.io, 2018.
[2] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,

J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al., “The
Snowflake Elastic Data Warehouse,” in SIGMOD, 2016.

[3] “Amazon Redshift,” https://aws.amazon.com/redshift/, 2018.
[4] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani,

and V. Srinivasan, “Amazon Redshift and the Case for Simpler Data
Warehouses,” in SIGMOD, 2015.

[5] R. B. Hagmann and D. Ferrari, “Performance analysis of several back-
end database architectures,” ACM Transactions on Database Systems
(TODS), vol. 11, no. 1, pp. 1–26, 1986.

[6] M. Ubell, “The Intelligent Database Machine (IDM),” in Query process-
ing in database systems. Springer, 1985, pp. 237–247.

[7] R. Weiss, “A Technical Overview of the Oracle Exadata Database
Machine and Exadata Storage Server,” Oracle White Paper. Oracle
Corporation, Redwood Shores, 2012.

[8] P. Francisco, “The Netezza Data Appliance Architecture,” 2011.
[9] R. Hunt, “S3 Select and Glacier Select – Retrieving Subsets of Objects,”

https://aws.amazon.com/blogs/aws/s3-glacier-select/, 2018.
[10] X. Yu, M. Youill, M. Woicik, A. Ghanem, M. Serafini, A. Aboulnaga,

and M. Stonebraker, “PushdownDB: Accelerating a DBMS using S3
Computation,” arXiv preprint arXiv:2002.05837, 2020.

[11] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy, “Hive — A Petabyte Scale Data
Warehouse Using Hadoop,” in ICDE, 2010.

[12] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational Data Processing in Spark,” in SIGMOD, 2015.

[13] “Apache Parquet,” https://parquet.apache.org, 2016.
[14] W. McKinney, “pandas: a Foundational Python Library for Data Anal-

ysis and Statistics,” Python for High Performance and Scientific Com-
puting, pp. 1–9, 2011.

[15] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[16] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

1805

