
GraphMini: Accelerating Graph Pattern Matching
Using Auxiliary Graphs

Juelin Liu, Sandeep Polisetty, Hui Guan, and Marco Serafini
Manning College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst MA, USA

{juelinliu, spolisetty, huiguan, marco}@cs.umass.edu

Abstract—Graph pattern matching is a fundamental problem
encountered by many common graph mining tasks and the basic
building block of several graph mining systems. This paper
explores for the first time how to proactively prune graphs to
speed up graph pattern matching by leveraging the structure of
the query pattern and the input graph. We propose building
auxiliary graphs, which are different pruned versions of the
graph, during query execution. This requires careful balancing
between the upfront cost of building and managing auxiliary
graphs and the gains of faster set operations. To this end, we
propose GraphMini, a new system that uses query compilation
and a new cost model to minimize the cost of building and
maintaining auxiliary graphs and maximize gains. Our evaluation
shows that using GraphMini can achieve one order of magnitude
speedup compared to state-of-the-art subgraph enumeration
systems on commonly used benchmarks.

Index Terms—graph pattern matching, subgraph enumeration,
proactive pruning, auxiliary graphs.

I. INTRODUCTION

Graph pattern matching is a fundamental problem encoun-
tered by many common graph mining tasks and real-world
applications, such as analyzing social networks [1], [2] and
protein-protein interaction networks [3]. It is also the basic
building block of several graph mining systems [4], [5], [6],
[7]. The problem is challenging because the search space and
the size of intermediate data increase exponentially with the
size of the data graph and query graph.

Graph pattern matching involves performing a large number
of set operations on the adjacency lists in the input graph.
These set operations are a well-known performance bottleneck
and speeding them up has been the focus of prior research [8].
State-of-the-art work reduced the number of set operations
by caching intermediate results to eliminate redundant oper-
ations [5] and by using better query execution schedules [9].
Other work has proposed better implementations of the set
operation [8], [10], [11], [12].

This paper explores a different and complementary direction
to speed up set operations: reducing the size of the adjacency
lists that are given as input to those operations. Graph pattern
matching systems usually match one query vertex or edge
at a time, using nested loops. Our basic insight is that,
when we match a query vertex in a loop, we can already
identify some data vertices in the data graph that will never
be matched in deeper loops. We can thus proactively prune

these vertices from adjacency lists to make the adjacency
lists shorter, accelerating the set operations involving these
lists in deeper loops without changing the query results. We
propose a new data structure auxiliary graph to keep track of
pruned adjacency lists on the fly during query execution. We
materialize the idea in GraphMini, a novel single-host graph
pattern-matching system that generates query execution code
to efficiently build, maintain, and reuse auxiliary graphs.

GraphMini addresses several research questions. First, we
establish criteria to identify which adjacency lists can be
pruned and how to prune them safely, without changing the
result of a query. The technique maintains multiple auxiliary
graphs from pruning the same adjacency list, each auxiliary
graph tailored to speed up the matching of a specific query
vertex. These auxiliary graphs can be further pruned online at
deeper loops as more intermediate results become available.
Our experiments show that the memory overhead of storing
auxiliary graphs is only a small fraction of the data graph.

Pruning adjacency lists preserves correctness but it does not
always speed up computation. Building an auxiliary graph en-
tails paying an upfront cost that should be amortized in deeper
loops. Deciding if the gains outweigh the costs is challenging
because we cannot ascertain how often an auxiliary graph
will be reused in the future. Pruning always does not yield
consistent speedups. We thus build a cost model that leverages
runtime statistics to estimate the gains of pruning an adjacency
list before it is actually pruned. We show that using the cost
model outperforms simple heuristics.

Our GraphMini system also implements a set of compile-
time optimizations to minimize the computation costs in
building, managing, and retrieving auxiliary graphs. These
optimizations include removing runtime checks for retrieving
the most suitable version of the pruned adjacency lists, reusing
auxiliary graphs to build other auxiliary graphs, and techniques
to balance load across parallel worker threads.

Our evaluation shows that GraphMini outperforms state-of-
the-art systems like GraphPi [9] and Dryadic [7] by up to
30.6x and 60.7x respectively. In addition, the code generation
algorithm has a minimal impact on the end-to-end query
execution time.

To summarize, we make the following contributions:
• We propose proactive graph pruning via a new data

structure called auxiliary graph to substantially speed

up graph pattern matching without changing the query
results.

• We propose a cost model to estimate whether the cost of
pruning an adjacency list will be amortized.

• We implement a novel single host graph pattern matching
system called GraphMini, which generates query execu-
tion code tailored to maximizing the benefit of proactive
pruning using several compile-time optimizations.

• We experimentally show that GraphMini is substantially
faster than state-of-the-art approaches.

II. BACKGROUND AND MOTIVATION

A. Problem Definition

The graph pattern matching, or subgraph enumeration,
problem takes a data graph G and a query graph q as input
and outputs the subgraphs {g} that are isomorphic to q. In
the edge-induced variant, a subgraph g(V (g), E(g)) of G is
isomorphic to q if there exists a bijection M between the sets
V (q) and V (g) such that:

∀vi, vj ∈ V (q) : (vi, vj) ∈ E(q) ⇐⇒ (ui, uj) ∈ E(g), (1)

where ui = M(vi) and uj = M(vj).
The vertex-induced variant of the problem has the following

additional requirements:

∀ui, uj ∈ V (g) : (ui, uj) ∈ E(g) ⇐⇒ (ui, uj) ∈ E(G).
(2)

In this case, we say the subgraph g matches q.
GraphMini supports both variants. Different graph mining

problems require different variants [13]. For example, the
edge-induced variant is used for the frequent subgraph mining
problem and the vertex-induced variant is used for motif
counting.

Typically, we output a result set R consisting of unique
subgraphs – that is, subgraphs that are not automorphic
to any other subgraph in R. Two subgraphs g(V (g), E(g))
and g′(V (g′), E(g′)) of G are automorphic if and only if
V (g) = V (g′) and (ui, uj) ∈ E(g) ⇐⇒ (ui, uj) ∈ E(g′).
We remove automorphic subgraphs in the output because they
are essentially the same subgraph obtained by matching the
query vertices in different orders.

B. Workflow of Graph Pattern Matching

State-of-the-art graph pattern matching and graph mining
systems [5], [6], [7], [9] typically run in two stages: query
scheduling and query execution. GraphMini also follows these
two stages with the additional step of creating and using
auxiliary graphs to accelerate query execution.

Query scheduling. Given an arbitrary query graph q as an
input, query scheduling aims to find a matching order for the
query. A matching order specifies which vertex in the query
graph should be matched first to a vertex in the data graph.
Given a matching order ϕ, we use the notation vi to denote the
query vertex in V (q) that has the ith position in the matching
order. If the query graph q is symmetrical, there could be
automorphic matches. Query scheduling will generate a set

of canonicality checks, which are rules to prune symmetrical
matches. We call the matching order of query vertices and the
canonicality checks a query schedule.

Query execution. Query execution first generates a query
execution plan specific to a query schedule and then executes
the generated plan to produce matches. The state-of-the-art
graph pattern matching systems [5], [6], [9] generate a query
execution plan as a sequence of nested loops using Ullmann’s
backtracking algorithm [14]. The algorithm materializes a
depth-first algorithm that traverses vertices in the data graph
and tries to identify a match between the vertices in the data
graph and those in the query graph.

Fig. 1: Query Schedule and Execution Plan a 4-clique Query

Example. Figure 1 shows an example of a query schedule
and execution for the 4clique pattern. All vertices in the query
pattern are assigned a sequence number vi. The canonicality
constraint vi < vi+1 means that for each pair of vertices ui,
ui+1 in the data graph that match vi and vi+1 respectively,
the vertex id of ui is smaller than the id of ui+1. This ensures
that only one canonical permutation of the match [u1, . . . , u4]
will be returned as a result, while all its other automorphic
permutations will be filtered out.

During query execution, the first outer loop iterates over all
u1 vertices in the data graph. Each of them matches the first
query vertex v1. Each vertex in N(u1), which is the adjacency
list of u1, is a candidate for matching the second query vertex
v2 if it respects the canonicality constraint u1 < u2. We use
C(v2) to denote the candidate set for v2. The second loop
iterates over each u2 ∈ C(v2) and performs similar steps.

C. Challenges and Opportunities

We now explain the challenges of graph pattern matching
and the opportunities that motivate the design of the Graph-
Mini system.

1) Challenges: Set operations represent the main bottleneck
of query execution. State-of-the-art systems [9], [5], [6], [7]
use prefix sets to cache the results of set operations and reuse
them at lower loops. For example, at loop depth 2 in Figure 1
it is possible to cache the result of the set operation N(u1)∩
N(u2) and reuse it in the lower loop to avoid executing the
same operation again.

We find that, even with existing prefix set-based optimiza-
tions, accessing adjacency lists, rather than prefix sets, still
dominates computational cost. Table I shows the fraction of
vertices accessed from adjacency lists vs. prefix sets by set
operations while running clique counting queries on various
graphs using Dryadic [7]. The results show that scanning
vertices from adjacency lists corresponds to a large fraction

(43%-95%) of the total vertices scanned. Therefore, pruning
adjacency lists has the potential to speed up the execution of
set operations.

Percentage of Vertices Scanned from Adjacency Lists
Graph Wiki Patents YouTube Lj Orkut Friendster

4-Clique 81% 43% 86% 91% 89% 82%
5-Clique 91% 45% 90% 95% 95% 90%

TABLE I: Cost of set operations: fraction of vertices accessed
from adjacency lists vs. prefix sets.

2) Opportunities: Motivated by the above observation, the
basic idea of GraphMini is to prune adjacency lists at the upper
loop levels to accelerate set operations involving these lists in
deeper loop levels. Even though we may not know exactly
which vertices match a given query vertex beforehand, we
can often identify some vertices that cannot match it.

To see why, consider the example of Figure 1. The first
loop of the query will iterate over all vertices matching the
query vertex v1. In the Figure, u1 is an alias denoting any data
vertex that matches v1. Suppose that we match the data vertex
a = u1 to the query vertex v1 in an iteration of the first loop.
After that, the algorithm will execute the nested loops to find
all subgraphs matching the query where v1 is matched to a.
Then, the algorithm will backtrack to the first loop and iterate
over to the next match for v1.

After matching v1 to a, we can already conclude from the
structure of the query graph that any vertex that matches v4
will have to be also in N(a). This is because v1 and v4 are
neighbors in the query graph. In other words, the candidate
set C(v4) of data vertices that match the query vertex v4 must
be a subset of N(a). Our goal is to use this information to
prune the adjacency lists that will be used to compute C(v4).

The candidate set C(v4) is computed at loop depth 3 by
intersecting the set N(u1) ∩ N(u2), which is computed at
loop depth 2, with N(u3). To speed up this set intersection,
we can compute at loop depth 1 a pruned version of N(u3)
that only includes candidates in C(v4) ⊆ N(a) as:

P (u3) = N(u3) ∩N(a).

We can then use this shorter pruned adjacency list instead of
N(u3) to compute C(v4).

This example shows that adjacency lists can be pruned
online, during query execution, and proactively, before the
adjacency lists are used. In Section IV, we show how to
generalize this simple example to arbitrary patterns and graphs.
In the example, we want to prune the adjacency list of N(u3)
at loop depth 1 but we will only know which vertices will be
matched to u3 in the future, when executing the nested loop
at depth 3. We show how to find a set of candidate adjacency
lists to prune at loop depth 1. We also show how to leverage
prefix sets to prune adjacency lists more effectively.

Weighing benefits and costs. It is not straightforward to
determine whether the upfront cost to compute and store the
pruned list will be amortized in the future. In the previous

example, the cost of computing and storing the pruned adja-
cency list P (u3) at loop depth 1 can be later amortized only
if pruning significantly reduces the size of N(u3), and the
pruned adjacency list P (u3) will be used multiple times to
compute C(v4) in lower loops.

In Section V, we propose a cost model to estimate the gain
of building a pruned adjacency list. The cost model is used
online to decide whether to prune an adjacency list. In the
example, we use the cost model at loop 1 to decide whether
to prune N(u3) or not.

Managing multiple auxiliary graphs. Managing pruned
adjacency lists could potentially add considerable runtime
complexity. One source of complexity is dealing with multiple
pruned versions of the same adjacency list. Suppose that we
have computed P (u3) in the first loop, moved to the second
loop, and matched a vertex u2. We can further incrementally
prune P (u3) by intersecting it with N(u2). Therefore, we
need to keep multiple versions of the same pruned adjacency
list at different loop depths and we need to retrieve them
efficiently to support fast incremental pruning. Another source
of complexity is that we need different pruned adjacency
lists for different query vertices. In the example, the pruned
adjacency list P (u3) can only be used to find candidates of
the query vertex v4 after matching v1 with a.

Keeping track of all these versions and using the right
version at each set operation could potentially add a significant
runtime cost. In Section VI, we discuss how the code generator
of GraphMini avoids these costs by determining which version
to use at compile time. We also discuss how it uses nested
loops to effectively balance work among worker threads.

III. OVERVIEW OF GRAPHMINI

GraphMini is an efficient graph pattern matching system
that leverages auxiliary data structures to accelerate query
execution. The fundamental idea of GraphMini is to build
auxiliary graphs consisting of pruned adjacency lists and
use them in deeper nested loops to reduce execution time.
This approach does not remove edges from the original data
graph. Instead, it builds multiple versions of pruned graphs
to accelerate the computations for different prefix sets and
candidate sets in the query.

The overview of GraphMini is shown in Figure 2. It takes
as input a query pattern graph and a data graph and produces
a set of matched subgraphs. Our contribution lies in the code
generator, which produces an efficient subgraph enumeration
algorithm using auxiliary graphs. The code generator produces
an efficient executable for each input query pattern. GraphMini
then uses the generated executable to match the input query on
the data graph. During query execution, GraphMini manages
multiple versions of auxiliary graphs to accelerate the set
operations without changing the results.

IV. PROACTIVE ONLINE PRUNING

This section defines auxiliary graphs and discusses how to
find all potential adjacency lists to prune. Table II summarizes
the notations used in the following discussions.

Fig. 2: Workflow of GraphMini

Notation Description
q(V (q), E(q)) a query graph, its vertices and its edges
G(V (G), E(G)) data graph, its vertices and its edges
M(v) data vertex matching the query vertex v
Ah(vk, vi) auxiliary graph with selecting set Ch(vk) and filtering set Ch(vi)
h, k, i three indices such that h < k < i

vi ith query vertex to be matched (vi ∈ V (q))
ui a data vertex matched to vi (ui ∈ V (G))
Ii a partial match [u1, u2, . . . , ui]
C(vi) candidate set of vi
Ch(vi) the hth prefix-set for vi
N(ui) neighbors of the vertex ui

Ph(uk|vi) pruned neighbors of uk at depth h for constructing Ck(vi)

TABLE II: Notations

A. Basic Pattern Matching

We first introduce how state-of-the-art systems perform
graph pattern matching [5], [7] with prefix set-based optimiza-
tions. Auxiliary graphs build on top of these optimizations.

Computing Candidate Sets. State-of-the-art systems match
a query vertex at a time and compute its candidate set using
nested loops. Consider computing the candidate set C(vi) at
the nested loop at depth i − 1. Assume the algorithm has
already found a partial match Ii−1 = [u1, . . . , ui−1]. The
set C(vi) is computed by performing set operations on the
adjacency lists of the vertices in Ii−1. The code generator
analyzes the edges between vi and the vertices in the query
graph that have already been matched, [v1, . . . vi−1].

Specifically, the algorithm partitions the vertices of Ii−1 into
two sets IT and IF such that:

∀u ∈ IT : u = M(vh) and (vh, vi) ∈ E(q)

∀u ∈ IF : u = M(vh) and (vh, vi) /∈ E(q) (3)

In the vertex-induced variant, the candidate set C(vi) con-
tains the data vertices matching the query vertex vi and is
defined as:

C(vi) = V (G) ∩
(⋂
u∈IT

N(u)
)
\
(⋃
u∈IF

N(u)
)
. (4)

In the edge-induced variant, the candidate set C(vi) is
defined as:

C(vi) = V (G) ∩
(⋂
u∈IT

N(u)
))
. (5)

Naı̈vely calculating candidate sets based on Eqns. 4 and 5 is
slow. We now discuss techniques and optimizations proposed
by the existing work.

Connected Ordering. In real graphs, the size of V (G) is
usually orders of magnitude larger than the largest adjacency

list in the graph. To avoid using V (G) as input in the set
operation, schedulers put a constraint on the ordering. Each
matched vertex vi must be a neighbor of some matched vh
where h < i unless it is the top vertex, that is, i = 1. This
constraint ensures that IT contains at least one vertex, so the
computation for C(vi) becomes:

C(vi) =
⋂

u∈IT

N(u) \
⋃

u∈IF

N(u). (6)

Prefix sets. Existing systems [5], [9], [6], [7] use prefix
sets to avoid the redundant execution of set operations. It
pushes the set operations in computing candidate sets to the
uppermost loop where the computation is feasible and reuses
the intermediate results in the inner loops.

We use Ch(vi) to denote the prefix set for the candidate
set C(vi) that can be computed at the nested loop with depth
h, with h < i. Ch(vi) is the superset of C(vi) that can be
obtained based on the adjacency lists of the vertices that have
been matched at loop depth h. Ih can be partitioned into two
sets Ih,T and Ih,F such that:

∀u ∈ Ih,T : u = M(vj) and (vi, vj) ∈ E(q),

∀u ∈ Ih,F : u = M(vj) and (vi, vj) /∈ E(q). (7)

The prefix set Ch(vi) is only materialized when Ih,T ̸= ∅.
It is defined as:

Ch(vi) =
⋂

u∈Ih,T

N(u) \
⋃

u∈Ih,F

N(u). (8)

When h = i − 1, the prefix set Ch(vi) is the candidate set
C(vi). The condition for the materialization of a prefix set is
that Ih,T ̸= ∅. This ensures that the prefix set can be used to
actually prune the candidate set.

Instead of computing the prefix set Ch(vi) from scratch at
each depth h, we can compute it incrementally based on the
prefix set at the depth h− 1 and the adjacency list of the data
vertex uh:

Ch(vi) = Ch−1(vi) ◦h N(uh), (9)

In vertex-induced graph pattern matching, the ◦h operator is
the set intersection operator (∩) if (vi, vh) ∈ E(q) or the set
subtraction operator (\) otherwise. In the edge-induced variant,
if (vi, vh) /∈ E(q) there is no set subtraction.

B. Auxiliary Graphs

An auxiliary graph is a data structure designed to accelerate
set operations by reducing the size of the adjacency lists they
take as input. Each auxiliary graph consists of multiple pruned
adjacency lists, each storing only a subset of the neighbors of
a data vertex. Whenever possible, GraphMini uses auxiliary
graphs instead of the original graph to find the adjacency lists
for the set operations. Pruned adjacency lists are smaller than
the original lists in the graph so set operations are faster.

Auxiliary graphs and prefix sets are fundamentally different
and complementary optimizations. Auxiliary graphs speed up
set operations by pruning their inputs; prefix sets execute set

operations as early as possible in the loop hierarchy. Auxiliary
graphs can speed up the calculation of prefix sets.

Definition of Auxiliary Graph. Each auxiliary graph is
relative to a pair of query vertices, which we denote as vi and
vk in the following. The auxiliary graph A(vk, vi) contains the
pruned adjacency lists of some data vertices uk matching vk.
These pruned lists are then used instead of N(uk) to compute
prefix sets or candidate sets for vi. The way the pruning occurs
depends on how vi and vk are connected in the query graph.

The auxiliary graph optimization has two main steps. At
each loop depth h, we compute some pruned adjacency lists.
Then, at each loop depth k > h, we use those pruned
adjacency lists to speed up the computation of that set. The
basic idea poses two core questions: (i) which adjacency lists
to prune, and (ii) how to prune the adjacency lists to ensure
correctness. We next answer these two questions and discuss
our solutions.

Identifying Potential Adjacency Lists to Prune. We now
show how to find all potential adjacency lists to prune. We
discuss how to decide whether we should actually prune them
in Section V.

Consider building an auxiliary graph Ah(vk, vi) at some
loop depth h. Our goal is to prune away some of the vertices
in N(uk), where uk matches vk, in order to accelerate the
computation of Ck(vi) at a deeper loop depth k > h.
Specifically, we would like prefix set calculation to become:

At loop h: Compute Ph,k(uk|vi) ⊂ N(uk), (10)
At loop k: Ck(vi) = Ck−1(vi) ◦k Ph,k(uk|vi). (11)

As we will see in the following, we prune N(uk) in a way
that is specific to the query vertex vi at loop h. We then want
to replace the adjacency list N(uk) with a pruned version
Ph,k(uk|vi) in Eqn. 9 at loop k to reduce the size of the input
of the set operation ◦k and thus its running time.

To prune N(uk), we need to know the vertex uk. At loop h,
however, we only have a partial match Ih = [u1 . . . uh] which
is a prefix of Ik and does not include uk. The question is, how
can we identify uk so that we can prune its adjacency list?

Our proposed solution is to use Ch(vk) to identify the set
of vertices that uk can be matched to. In other words, we can
potentially prune all {N(u) | u ∈ Ch(vk)}. The solution is
based on the properties of prefix sets. The data vertex uk is
defined to be one of the vertices matching the query vertex
vk. It holds that:

uk ∈ C(vk) = Ck−1(vk) ⊆ Ch(vk). (12)

When using the prefix optimization, the candidate set C(vk)
is equal to the last of its prefix sets Ck−1(vk). The prefix sets
are built to incrementally remove candidate vertices using set
operations, so C(vk) ⊆ Ch(vk).

Pruning the Adjacency Lists. After identifying the poten-
tial adjacency lists to prune, the next question is how to prune
them. Even though at loop h we do not know exactly which
vertices match vi, we can already tell the vertices that are
not in Ch(vi) are definitely not matches, so we can remove

them from N(uk). The result will not change because of the
following observation from the set theory.

Lemma 1 (Superset-based pruning rule). Let C, C ′, P , and
N be four sets, and ◦ denote either the set intersection or the
set subtraction operator. If C ⊆ C ′ and P = C ′ ∩N then:

C ◦N = C ◦ P
We use this rule to compute a pruned version of N(uk) for

the auxiliary graph of vi at loop h. We call this the pruned
adjacency list Ph,k(u|vi) and define it as follows:

Ph,k(u|vi) = Ch(vi) ∩N(u), u ∈ Ch(vk). (13)

Note that we use the notation u instead of uk because u is in
the prefix set of vk at loop h but it may not end up being a
candidate for vk. Each pruned adjacency is specific to a query
vertex vi because it is filtered using a prefix set of C(vi).

At loop h, we compute the pruned adjacency list. Later, we
use the pruning rule again at loop k and replace Eqn. 9 with
the following expression:

Ck(vi) = Ck−1(vi) ◦k Ph,k(uk|vi) (14)

This expression is equivalent to Eqn. 9 because of the superset
pruning rule (Lemma 1) since Ck(vi) ⊆ Ck−1(vi).

In summary, we still compute Ck(vi) incrementally from
Ck−1(vi) as in Eqn. 9, but we now do it using the pruned
adjacency list Ph,k(uk|vi) to speed up the execution of the set
operation ◦k.

Putting It All Together. The auxiliary graph Ah(vk, vi) at
loop depth h consists of the pruned adjacency lists Ph,k(u|vi)
for some u ∈ Ch(k). It optimizes the set operation ◦k in two
steps:

1) At loop h, we prune N(u) by computing Ph,k(u|vi) as
in Eqn. 13, for each u ∈ Ch(vk).

2) At loop k > h, we compute Ck(vi) using Ph,k(u|vi) as
in Eqn. 14.

Building an auxiliary graph requires two prefix sets, which
we call the selecting set and the filtering set. The selecting
set is the prefix set Ch(vk) in Eqn. 12 used to select which
adjacency lists to prune. The filtering set is the prefix set
Ch(vi) in Eqn. 13, which is used to compute the pruned
adjacency lists before adding them to the auxiliary graph. Both
the selecting set and the filtering set must be materialized
before we can build an auxiliary graph.

Example. We use the example in Figure 3 to illustrate how
the proposed auxiliary graph works. For simplicity, we ignore
canonicality checks in this example. We assume u1 = a, C(v3)
and C(v4) will always be a subset of N(a) in the inner loops
because the query schedule requires that u3 and u4 must be
the neighbors of u1. To accelerate the computation for C(v4),
we can prune the adjacency lists of each vertex in N(a),
which are N(b), N(d), and N(e). We do that by intersecting
each of them with N(a) and obtain pruned adjacency lists
P1,3(u|v4), with u ∈ {b, d, e}. Then, we can use these pruned
lists to replace N(u3) in the computation for the candidate
set C(v4) without affecting the results. Figure 3 shows the
original adjacency lists and their pruned version.

Fig. 3: GraphMini Pruning Example. Query vertices with
dashed outlines have not been pruned in that loop. We focus
on the set operations for computing C(v4) at different loop
levels. We assume u1 is matched to a in this example.

V. PRUNING COST MODEL

In the previous Section, we have discussed how to find the
set of adjacency lists to potentially prune. In this section, we
discuss how to choose adjacency lists to actually prune based
on our cost-benefit analysis. We analyze the cost and benefit of
pruning an adjacency list. Based on the analysis, we propose
an online approach to decide which adjacency lists to prune
using runtime information.

A. Benefit and Cost of Pruning

Pruning an adjacency list requires a set intersection, whose
cost is a function of the size of its inputs. The benefits depend
on how many vertices we can prune from the adjacency list and
on how many times the pruned adjacency list will be reused.
We express costs and benefits in terms of the reduction in the
number of comparisons required to perform this computation.
We assume that the input adjacency lists and prefix sets are
sorted and we estimate the number of vertices to be scanned
by the set operations as the sum of the set sizes.

Definitions. When our algorithm computes a pruned adja-
cency list at loop h, it reaches that loop depth after obtaining
a partial match Ih. The pruned adjacency list will be used in
the nested loops at a higher depth than h, where all the partial
and final matches will be extensions of Ih. We use e(Ih, k, u)
to denote the set of all partial matches of size k that extend
Ih where the data vertex u matches the query vertex vk. Note
that each prefix set Cj(vi) is calculated after having obtained
a partial match Ij , for any value of j. We say in that case
that Cj(vi) is relative to Ij . We still use the notation Cj(vi)
instead of a more precise Cj,Ij (vi) for simplicity.

Cost/Benefit Analysis. We start by counting the number
of comparisons performed at loop depth k without auxiliary
graphs, using the expression of Eqn. 9.

o(Ih, k, u, i) =
∑

Ik∈e(Ih,k,u)

|Ck−1(vi)|+ |N(u)|

We assume that the sets Ck−1(vi) and N(u) are sorted lists
and that the set operation scans them. The worst-case running
time of the set operation is thus the sum of the cardinality of
the two sets.

With auxiliary graphs, the cost becomes:

a(Ih, k, u, i) = |Ch(vi)|+ |N(u)|+∑
Ik∈e(Ih,k,u)

|Ck−1(vi)|+ |Ch(vi) ∩N(u)|

The first line of the equation is the cost of computing the
pruned adjacency lists at loop h using Eqn. 13. The second
line is the cost of using the pruned adjacency list, which has
size |Ch(vi)∩N(u)|. For each vertex uk ∈ C(vk), we compute
Ck(vi) using Eqn. 14.

The gain of building a pruned adjacency list at loop h can
thus be expressed as follows.

g(Ih, k, u, i) = o(Ih, k, u, i)− a(Ih, k, u, i)

= |e(Ih, k, u)| · (|N(u)| − |Ch(vi) ∩N(u)|)
− (|Ch(vi)|+ |N(u)|).

This expression shows that pruning is not always advanta-
geous. Pruning all u ∈ Ch(vk) does not guarantee that there
is a gain. Ideally, we would like to compute Ph,k(u|vi) if and
only if the gain is positive for a given vertex u.

B. Online Cost Model

We now discuss how we use runtime information to predict
the gain of a pruning adjacency list. Our intuition is to use
runtime information to estimate the variables in the above
analysis to compute the gain.

The above analysis needs four variables to estimate the
gain: |e(Ih, k, u)|, |N(u)|, |Ch(vi) ∩ N(u)| and |Ch(vi)|.
At runtime, we can directly obtain |N(u)| and |Ch(vi)| by
reading from the data graph and the prefix set. However,
|Ch(vi) ∩ N(u)| and |e(Ih, k, u)| are unknown unless we
perform further computation to obtain those sets, which can be
costly. We now discuss how we estimate the sizes of these two
sets at loop h− 1 using information that is already available.

Assuming that each vertex in N(u) is equally likely to be
in Ch(vi), we can estimate |Ch(vi) ∩N(u)| as:

|Ch(vi) ∩N(u)| ≈ |Ch(vi)| · |N(u)|
|V (G)|

To estimate |e(Ih, k, u)|, we assume that all the vertices in
Ch(vk) are equally likely to appear in C(vk) as we extend
Ih to Ik. However, the cardinalities of the candidate sets
C(uh+2), . . . , C(uk) are unknown at the time we run the cost
model since those candidate sets will only be materialized in
the inner loops. We estimate the size of these candidate sets
using their prefix sets at loop Ih as follows:

|e(Ih, k, u)| ≈
1

|Ch(vk)|
×

∏
i∈[h+1,k]

E (|C(vi)|)

where E (|C(vi)|) denotes the estimated cardinality of the
candidate set C(vi).

We estimate the cardinality of a candidate set E (|C(vi)|) as
follows. First, we compute some query-independent statistics
of the data graph offline [9]. Assuming the degree of adjacency
lists have a uniform distribution, let p1 be the probability that
two randomly selected vertices are connected and p2 be the
probability that two randomly selected vertices are connected
given that they are both connected to a common vertex (which
forms a triangle). We have:

p1 =
2× |E(G)|
|V (G)|2

, p2 =
tri cnt× |V (G)|
(2× |E(G)|)2

The first equation calculates p1 as the fraction of vertex pairs
that are connected by an edge. It divides the total number of
undirected edges in the graph by the number of unique vertex
pairs that can be selected from the graph, disregarding the
order of the vertices in the pair. The second equation calculates
p2. If two vertices x and y have a common neighbor z and are
connected with each other, it implies that a triangle consisting
of x, y, and z exists. Thus, we can compute p2 as the fraction
of triangles including z over the number of distinct pairs of
neighbors of z.

Then, at query execution time, we use Algorithm 1 to
estimate the sizes of the candidate sets E (|C(vi)|) in the
deeper nested loops. The algorithm uses the statistics of the
data graph p1 and p2 as constants to estimate the pruning
power of future set intersections in the inner loops.

The algorithm estimates the size of the prefix sets of C(vi)
at all nested loop depths. At loop depth h, the prefix set Ch(vi)
is to be intersected with N(uh+1) to compute Ch+1(vi). We
can estimate the size of the intersection result by computing
the probability that a randomly selected vertex from |Ch(vi)|
is connected to uh+1. If uh+1 and ui do not have a common
neighbor, then:

|Ch+1(vi)| ≈ |Ch(vi)| × E (|N(uh+1)|)÷ |V (G)|
= |Ch(vi)| × 2× |E(G)| ÷ |V (G)|2

= |Ch(vi)| × p1

If we know from the query graph that uh+1 and ui must
have a common neighbor uj (j ≤ h), then we know that uh+1

and all vertices in |Ch(vi)| must be connected to uj . In this
case, we can use p2 to estimate the probability that a randomly
selected vertex from |Ch(vi)| is connected to uh+1:

|Ch+1(vi)| ≈ |Ch(vi)| × p2

A similar logic is followed for all subsequent loop depths after
h+ 1 until we obtain the final estimation E(|C(vi)|).

The runtime overhead of this estimation is small because
the algorithm multiplies |Ch(vj)| to a constant factor that is
computed at compile time based on the statistics of the data
graph (p1 and p2) and the structure of the query.

A limitation of the above analysis is it underestimates the
reuse frequency for high-degree adjacency lists since both p1
and p2 are computed based on the assumption that the degrees

are uniformly distributed. To address the limitation, we pre-
allocate the memory buffer for storing the pruned adjacency
lists of high-degree vertices, but delay the actual pruning to
the query time to avoid over-pruning.

Algorithm 1 Candidate Set Cardinality Estimation

Input: E(q): edges in the query graph.
Input: Ch(vi): prefix set for candidate set C(vi).
Output: E(|C(vi)|): Estimated cardinality of C(vi).

procedure ESTIMATECARD(E(q), Ch(vi))
EstCard ← |Ch(vi)|
for l ∈ [h+ 1, i] do

if (vi, vl) ∈ E(q) then
if ∃vt : (vt, vl), (vt, vi) ∈ E(q) for t < i, l then

EstCard ← EstCard × p2
else

EstCard ← EstCard × p1
E(|C(vi)|)← EstCard
return E(|C(vi)|)

VI. CODE GENERATION

We now discuss the code generation process and compile-
time optimizations in the GraphMini system.

A. Identifying Auxiliary Graphs

Given and query and its schedule, GraphMini generates
query-specific code to find matches (see Figure 2). GraphMini
runs Algorithm 2 at code generation time to identify candidate
auxiliary graphs that can be potentially used. It then adds static
references to the auxiliary graphs to avoid the runtime cost of
looking up which ones can be used. The auxiliary graph can
contain either a reference to the original adjacency list or the
pruned adjacency, depending on the decisions made at runtime
using the cost model discussed in Section V-B.

Given a query schedule, the algorithm iterates through the
prefix sets that are computed at loop level k >= 3. We skip the
prefix sets at the first two loops because their inputs cannot be
further pruned. For a prefix set Ck(vi) computed at loop depth
k, we check whether we can prune the adjacency lists N(uk)
at loop h ≤ k−2. This is done by checking if the selecting set
Ch(vk) and the filtering set Ch(vi) are both materialized, as
we need to use them to compute the pruned version of N(uk)
(see Section IV-B). If so, we add the associated auxiliary
graph to a list. Later, the code generator will insert all the
auxiliary graphs in the list into the generated algorithm.

Time Complexity Analysis. The number of prefix sets for
a query graph q is in O(|V (q)|2). For each prefix set, we
need to check if its parent prefix set and selecting set are
both materialized at some upper loops. Since there are at most
|V (q)| loops and checking whether a prefix set is materialized
can be done in O(1), the time complexity of finding all the
auxiliary graphs is in O(|V (q)|3).

Algorithm 2 Find Auxiliary Graphs
Input: Schedule: Query pattern schedule.
Input: |V (q)|: Query pattern size.
Output: AuxGraphs: Candidate auxiliary graphs.

procedure FINDAUXGRAPHS(Schedule, |V (q)|)
AuxGraphs ← []
for k ∈ [3, |V (q)| − 1] do

PrefixSets ← all prefixes materialized at loop k
for Ck(vi) ∈ PrefixSets do

for h ∈ [1, k − 2] do
if Ch(vi) and Ch(vk) are materialized then

AuxGraphs.add(Ah(vk, vi))

return AuxGraphs

B. Compile-Time Optimizations

Reusing Auxiliary Graphs. In addition to using auxiliary
graphs to speed up set operations for computing prefix sets,
GraphMini determines at code generation time whether it can
re-use one auxiliary graph to speed up the construction of
another auxiliary graph.

For example, assume we can build two auxiliary graphs at
loop level h and h+1 respectively, both auxiliary graphs intend
to accelerate the computation for Ck(vi). We refer to the
auxiliary graphs as Ah(vk, vi) and Ah+1(vk, vi) respectively.
The key idea is that we can use Ah(vk, vi) to speed up the
construction of Ah+1(vk, vi).

Consider the auxiliary graph Ah+1(vk, vi). We can utilize
the pruned adjacency list Ph,k(u|vi) to compute the pruned
adjacency list Ph+1,k(u|vi) since:

Ph+1,k(u|vi) = Ch+1(vi) ∩N(u)

= Ch+1(vi) ∩ Ch(vi) ∩N(u)

= Ch+1(vi) ∩ Ph,k(u|vi).

Thus we can use the pruned adjacency lists in Ph,k(u|vi) ∈
Ah(vk, vi) to construct Ah+1(vk, vi).

In summary, if both the selecting set and the filtering set of
an auxiliary graph A are supersets of those of another auxiliary
graph A′, GraphMini generates code that uses A to build A′.

Nested Parallelism. Graph pattern matching algorithms
execute queries using nested “for” loops as described in
Section II. Each loop matches one query vertex. Existing
code-generation-based graph pattern matching systems only
parallelize the first loop in their generated code for the single
host subgraph enumeration workload. In this case, each thread
obtains one root vertex at a time and extends all its partial
matches. This approach cannot effectively use all the cores
in a multiple-core system when the load across different root
vertices is highly skewed, as it often happens in graphs.

Thus, our code generator uses nested loop parallelism by
default to reduce the imbalance between worker threads.
We implemented nested parallelism in two steps: during the
compilation phase and then at runtime.

During the compilation phase, we track the necessary vari-
ables for executing each loop and create function object classes

to encapsulate that information. For example, for a 4-clique
query, we can create a function object class solely responsible
for performing computations within the second, third, and
fourth loops respectively. Each instance of the object will
retain the necessary information, including the value of u1,
the prefix sets, and auxiliary graphs that were created during
the execution of the upper loops.

During runtime, an evaluation is performed to assess the
number of vertices to be scanned in the second loop. When the
vertex count surpasses a predefined threshold, we encapsulate
the following loops within a function object instance and
execute them concurrently using multiple threads. In the 4-
clique query example, by concurrently executing the function
object generated in the first step, we enable the simultaneous
extension of u1 into 4-cliques across multiple threads instead
of using a single thread as in previous work.

To reduce the overhead of obtaining buffer memory inside
nested loops, we assign each worker a private memory pool
to manage its allocated memories, allowing the worker to
efficiently reuse its allocated buffer without synchronization
with other workers.

Note that nested parallelism and auxiliary graphs are two
orthogonal techniques. Nested parallelism reduces workload
imbalance across different threads, whereas auxiliary graphs
reduce the total amount of computations.

VII. EVALUATION

A. Experiment Settings

Compared Systems. We compare GraphMini with two
state-of-the-art systems: Dryadic [7] and GraphPi [9].

Dryadic [7] is a compilation-based subgraph enumeration
system. It supports both vertex-induced and edge-induced
subgraph matching on labeled and unlabeled graphs. We
obtain the binary of Dryadic from its author. The version
we obtained also comes with a backend for set operations,
which implements set intersections and set subtractions as
linear scans of sorted adjacency lists.

GraphPi [9] is the state-of-the-art subgraph enumeration
system. It supports edge-induced subgraph enumeration on
unlabeled graphs. It also optimizes for counting if the user
only wants to know the number of matches. We use the open-
sourced GraphPi implementation in our evaluation.

Our evaluation shows that when the query schedules gener-
ated by the two systems are the same (e.g. cliques), Dryadic
has better performance due to its more efficient backend
implementation. However, when the systems generate different
schedules, GraphPi usually outperforms Dryadic. Thus, we
use GraphPi’s scheduling algorithm in GraphMini to generate
query schedules.

Hardware and Software Setup. We run all experiments on
an AWS c6i.16xlarge instance, which is running Ubuntu 22.04
with 32 cores (64 threads) and 128 GB of RAM. The machine
has one Intel(R) Xeon(R) Silver 8375C CPU (2.90GHz, Turbo
3.50Ghz). All tests use 64 CPU threads unless otherwise
stated. All software is written in C++ and compiled with GCC
11.3 with -O3 optimization.

TABLE III: Data Graphs.

Name |V (G)| |E(G)| dmax davg Description
Wiki 7.1k 103k 1.1k 29 Wikipedia votes
YouTube 1.1M 3.0M 28.7k 5.5 YouTube social network
Patents 3.8M 16.5M 0.8k 8.7 US Patents citation network
Lj 4.0M 34.7M 14.8k 17 LiveJournal social network
Orkut 3.1M 117M 33.3k 75 Orkut social network
Friendster 65.6M 1.8B 5.2k 55 Friendster gaming network

Fig. 4: Query Graph Patterns

Multi-threaded Settings. For all baseline systems for com-
parison, we use OpenMP (v4.5) to automatically parallelize the
generated algorithms on the first loop by using the “pragma
omp parallel” construct. We use the “dynamic” scheduling
strategy with a chunk size of 1 in all experiments, which
provides the best performance in our setting.

For GraphMini, we use the Intel oneTBB (2021.8.0) library
to implement the nested loop parallelism. For partitioning the
root vertices, we use its “simple partitioner” with a chunk
size of 1, which is similar to the “dynamic” scheduling in
OpenMP. For deeper loop levels, we use “auto partitioner”
to distribute tasks to each worker. The “auto partitioner” will
choose the chunk size at runtime based on the computation
resources available on the machine.

Data and Query Graphs. We use six real-world data
graphs from SNAP [15] in our evaluation. Their statistics are
shown in Table III. Data and auxiliary graphs are stored in the
main memory during query execution. We treat all the graphs
as undirected.

The query graphs we use in the evaluation are shown in
Figure 4. They come from the benchmarks used in the evalua-
tion of previous work [9], [6], [7]. They are complex patterns
meant to stress test the subgraph enumeration algorithms.

B. GraphMini vs State-of-the-Arts

Query Execution Time. We start by comparing the time
different systems take to match the query patterns of Fig-
ure 4, considering different variants of the pattern matching
problem. GraphPi does not support vertex-induced pattern
matching but it introduces dedicated optimizations for edge-
induced counting, so we consider that variant separately. The
execution time encompasses the time required to identify all
matching subgraphs within the graph after the data graph has
been loaded into memory. For GraphMini, the execution time
includes all the steps required to create and maintain auxiliary
graphs, which occur at runtime.

Figure 6 shows the speedup of GraphMini when compared
to the state-of-the-art systems. We exclude the time to load
the input graph into memory to show the direct effects
of the auxiliary graphs on accelerating code efficiency. For

p1 p2 p3 p4 p5 p6 p7 p80
9

18
27
36

Sp
ee

du
p

wiki
youtube
patents

lj
orkut
friendster

1.0x

(a) GraphMini vs Dryadic (Vertex-Induced)

p1 p2 p3 p4 p5 p6 p7 p80
15
30
45
60

Sp
ee

du
p

1.0x

(b) GraphMini vs Dryadic (Edge-Induced)

p1 p2 p3 p4 p5 p6 p7 p80
7

14
21
28

Sp
ee

du
p

1.0x

(c) GraphMini vs GraphPi (Edge-Induced)

p1 p2 p3 p4 p5 p6 p7 p80
7

14
21
28

Sp
ee

du
p

1.0x

(d) GraphMini vs GraphPi (Edge-Induced Counting)

Fig. 5: GraphMini vs State-of-The-Art Systems

GraphMini, the reported query execution times always include
the construction time of auxiliary graphs, which takes place
online during query execution. An empty bar in the diagram
indicates that the baseline system does not finish that query in
24 hours.

GraphMini is significantly faster than both state-of-the-
art systems. In edge-induced pattern matching, GraphMini
outperforms GraphPi and Dryadic by up to 30.6x and 60.7x
respectively. In vertex-induced pattern matching, GraphMini
outperforms Dryadic by up to 35x.

GraphPi uses a single runtime to execute all queries instead
of generating a dedicated binary for each query. This approach
reduces code generation overhead (see Table IV for detail)
but increases runtime overhead. For example, running P4 on
Orkut GraphPi requires 220s to finish whereas Dryadic and
GraphMini only take 19s and 6.8s respectively.

Dryadic uses code generation but it does not leverage
auxiliary graphs, so its set operations are more expensive than
in GraphMini. It also suffers from an imbalanced workload
across different threads. For instance, when running vertex-
induced query P2 on Y ouTube, Dryadic requires 14s to finish,
but the average finishing time per thread is only 2.2s, which
indicates a great amount of workload imbalance. GraphMini
only takes 1.6s using the same schedule thanks to the com-
bined acceleration of nested parallelism and auxiliary graphs.

Pattern P1 P2 P3 P4 P5 P6 P7 P8

TGraphPi 0.001s 0.001s 0.002s 0.02s 0.02s 0.03s 0.08s 0.8s
TDryadic 1.3s 1.4s 1.3s 1.3s 1.3s 1.5s 1.4s 1.5s
TOnline+N 1.0s 1.6s 1.7s 1.7s 1.9s 1.9s 2.0s 1.8s

TABLE IV: Code Generation Time

Code Generation Time. During code generation, Graph-
Mini introduces extra overhead for code generation compared
to the state-of-the-art because it needs to consider auxiliary
graphs. Using nested loop parallelism also creates more code
for compilation. Table IV shows GraphMini’s code generation
time compared to the state-of-the-art. TGraphPi reports the
code generation time of GraphPi [9]. TDryadic reports the code
generation time of Dryadic [7] the results are the average of
3 runs.

GraphPi has the least code generation overhead because
it does not need to compile source code into binaries for
different queries. It only needs to generate a query schedule
that can be executed directly by its backend. Dryadic and
GraphMini generate a dedicated binary for a given query so
the code generation overhead is higher when compared to
GraphPi. GraphMini needs to additionally generate code for
building and managing auxiliary graphs and function objects to
implement nested loop parallelism, hence the code generation
overhead increases as the pattern size increases. However, the
overhead of code generation can be amortized over time by
reusing the generated binaries. It is also small when compared
to the pattern-matching workload on large graphs. Running
small pattern queries on small data graphs can make code
generation become a bottleneck, making GraphPi’s approach
more attractive.

C. Ablation Study

Auxiliary Graphs and Nested Parallelism. We now eval-
uate the effect of two optimizations we presented in this
paper: auxiliary graphs and nested parallelism. We compare
GraphMini with a baseline Base that uses the same codebase
but does not use those two optimizations.

GraphMini outperforms Base by up to an order of mag-
nitude in both vertex-induced and edge-induced workloads.
GraphMini has an overall better speedup for vertex-induced
workloads because these patterns have a larger number of set
operations to compute (due to anti-edges), providing more op-
portunities to accelerate set operations using auxiliary graphs.

Table V provides a breakdown of the performance enhance-
ments using the methods introduced in this paper. TBase is
the query execution time of Base. TBase+N is the query
execution time when we use nested loop parallelism on top of
Base. TOnline considers using auxiliary graphs to accelerate
set operations, but not nested loop parallelism. TOnline+N

considers both nested loop parallelism and auxiliary graphs,
which is the default setting of GraphMini.

When the workload is initially imbalanced across different
workers (ex. P6 on wiki), the nested parallelism allows idle
computation resources to participate in query execution, hence
speeding up the query execution time. When the workload

p1 p2 p3 p4 p5 p6 p7 p80
3
6
9

12

Sp
ee

du
p

wiki
youtube
patents

lj
orkut
friendster

1.0x

(a) GraphMini vs Base (Edge-Induced)

p1 p2 p3 p4 p5 p6 p7 p80
2
4
6
8

10
12

Sp
ee

du
p

1.0x

(b) GraphMini vs Base (Vertex-Induced)

Fig. 6: GraphMini vs Base

Graph wiki orkut
Pattern P5 P6 P7 P3 P4 P5

TBase 6.4s 10.7s 33.8s 936s 17.6s 35,790s
TOnline 2.6s 10.4s 15.8s 205s 6.8s 8,567s
TBase+N 2.5s 2.5s 8.8s 928s 17.5s 30,542s
TOnline+N 0.96s 2.5s 3.5s 206s 6.8s 5,750s

Speedup 6.6x 4.3x 9.7x 4.5x 2.6x 6.2x

TABLE V: Comparison with Base (Vertex-Induced) (The
speedup is computed via TBase/TOnline+N). TOnline+N cor-
responds to GraphMini.

is more balanced (ex. P3 and P4 on Orkut), using auxiliary
graphs accelerates set operations by reducing the total amount
of work in absolute terms. When the workload is imbalanced
and set operations can be accelerated by using auxiliary graphs
(ex. P5 and P7 on Wiki; P5 on Orkut), combining both
techniques dramatically speeds up query execution.

Fig. 7: The total number of comparisons for running edge-
induced P3 on Friendster, aggregated by the length of the
original adjacency lists.

Online vs. Eager. We now compare using GraphMini’s
online cost model against an Eager variant that prunes all
candidate adjacency lists and does not use the cost model. Base
does not use auxiliary graphs at all. We measure the number
of comparisons used in the set operations they perform.
For Online and Eager, the reported times include the set
operations introduced to prune the adjacency lists. Figure 7
shows the total number of comparisons required to run P3

(edge-induced) on Friendster, grouped by the degree of the
original adjacency lists.

The Online approach has the overall least number of

vertices scanned because it uses the cost model to avoid
pruning adjacency lists that might not provide any benefit. The
Eager approach scans more vertices compared to the Online
and Base to prune all candidate adjacency lists, but this cost
is not amortized later during query execution.

Pattern P4 (Vertex-Induced) P5 (Vertex-Induced)
Graph Tw/o Tw Speedup Tw/o Tw Speedup
Wiki 0.02s 0.02s 1.0x 1.1s 0.9s 1.2x

Patents 0.08s 0.08s 1.0x 0.4s 0.4s 1.0x
YouTube 0.03s 0.03s 1.0x 4.6s 3.2s 1.4x

Lj 13.2s 13.2s 1.0x 2651s 2523s 1.1x
Orkut 8.6s 6.9s 1.2x 6831s 5861s 1.2x

Friendster 61.6s 50.1s 1.2x 4558s 3385s 1.3x

TABLE VI: Reusing auxiliary graphs for building auxiliary
graphs.

Re-using Auxiliary Graphs. Table VI shows the compari-
son of running P4 and P5 with and without reusing auxiliary
graphs to build auxiliary graphs. For sparse graphs like Wiki,
Patents, and Lj the effect of reusing is not significant. On
larger graphs like Orkut and Friendster, reusing auxiliary
graphs can further speed up query execution by 20% - 30%.

D. Memory Consumption

We now discuss the memory consumption of storing aux-
iliary graphs during query execution. Table VII shows the
average memory requirement per thread for storing auxiliary
graphs in the vertex-induced variant. The memory footprint
of the edge-induced variant is smaller than the vertex-induced
one because there are no anti-edges, so we don’t need to build
auxiliary graphs to accelerate set subtractions.

The results show that the memory consumption for storing
auxiliary graphs on each worker thread is usually only a small
fraction of the data graph. Memory usage for storing auxiliary
graphs is associated with three main factors: the maximum
vertex degree in the data graph, the density of the query graph,
and the canonicality constraints of the query schedule.

The maximum vertex degree in the data graph impacts
memory consumption because it determines the maximum size
of the prefix sets, which are used to build auxiliary graphs. For
example, Wiki and Patents have similar maximum degrees,
and the memory consumption of auxiliary graphs is similar on
these graphs. The maximum degree in Orkut is larger than that
of Friendster so the memory consumption on Orkut is larger

Avg. size of auxiliary graphs (MB)
Graph size (MB) P1 P2 P3 P4 P5 P6 P7 P8

Wiki 0.7 0.1 0.5 0.4 0.1 0.5 0.8 0.6 0.3
Patents 142 0.1 0.3 0.2 0.1 0.3 0.3 0.7 0.3

YouTube 28 0.1 10 2.0 0.1 2.3 3.7 80 0.4
Lj 281 1.2 7.1 6.6 2.1 6.8 5.5 7.3 OT

Orkut 907 0.9 164 56 1.0 59 59 113 9.5
Friendster 14.4k 0.6 39 37 0.7 37 20 OT 3.1

TABLE VII: Average memory consumption for storing auxil-
iary graphs per thread. (OT means the query takes more than
24 hours to run)

across all queries, even though Friendster is a much larger data
graph than Orkut.

The density of the query graph impacts memory consump-
tion because denser patterns (e.g., cliques) perform more set
intersections and present more opportunities to prune adja-
cency lists. In vertex-induced matching, the absence of an edge
between two query vertices implies the presence of an anti-
edge, which enables the use of set subtractions to compute the
prefix sets. However, the pruning power of set subtraction is
usually less than that of set intersections on sparse data graphs.
As a result, the prefix sets will have a larger size which leads
to larger memory footprints when building auxiliary graphs.
For example, the query graph P2 is less dense than P3 and P4

and therefore it has the largest memory consumption.
The canonicality constraints of the query schedule also play

an important role because they enhance the pruning power of
set intersections. This power depends on multiple factors such
as the symmetry of the query graph [9], [6]. For example, the
schedules for query P6 have stricter canonicality constraints
than those of P5, so in some cases auxiliary graphs for P6

have a lower memory consumption than for P5 even though
P5 is denser than P6.

VIII. RELATED WORK

Several frameworks [16], [17], [18] tackle general graph
processing. These frameworks provide an extensible high-level
task API while abstracting several low-level components such
as scheduling, graph access, and parallelism. However, they
are not well suited for graph mining problems such as motif
counting and frequent subgraph mining. This has motivated
the development of dedicated subgraph-centric graph mining
frameworks [13], [19], [20], [21], [4], [5], [6], [9]. Recent
graph mining systems work uses subgraph query matching as
the key building block [5], [4]. They select the optimal sched-
ules at query time and generate an optimized algorithm or
binary to handle query matching. State-of-the-art systems use
a code generation approach to improve performance further
[5], [6]. GraphMini advances this line of work by proposing a
novel direction for performance optimization. Throughout the
paper, we extensively discuss the state-of-the-art to motivate
our work and show that GraphMini outperforms it.

This work considers subgraph enumeration using unlabeled
data graphs and queries. Other prior work focuses on sub-
graph matching, where graphs and queries are labeled. For a
recent survey and experimental evaluation of these algorithms,
see [22]. RapidMatch is another more recent work in this
area [23]. cuTS optimizes subgraph matching on GPUs [24].
A key challenge in subgraph matching is leveraging labels
to filter candidate vertices and find a good query schedule,
which is not an issue in subgraph enumeration. Auxiliary data
structures are commonly used in subgraph matching [25], [26],
[27], [22], [28], [29], [30] and lead to significant speedups
[22], [30]. However, these techniques rely on labels and are
not designed for subgraph enumeration.

This work considers main-memory graphs. Other work
considered algorithms for out-of-core graphs [31], or large

graphs that are partitioned across servers [32]. Orthogonal
optimizations include exploiting symmetry to reuse computa-
tion [33] or exploring output compression [34]. PBE-REUSE
shares the results of set intersections across GPU threads by
using a BFS matching strategy, which results in a much larger
intermediate state than the more common backtracking DFS
approach [35]. None of these algorithms considered proactive
online graph pruning, which is introduced in this work.

Some work proposes accelerating set intersections by using
a graph’s binary representation and AVX/SSE instructions in
the CPUs [10], [8]. Some work proposes using specialized
hardware to accelerate subgraph matching. FlexMiner [11]
uses specialized hardware and on-chip memory to accelerate
subgraph enumeration. DIMMining [12] is a more recent work
that uses newly designed instruction sets and hardware to
accelerate set operations in subgraph enumeration. Our work
also aims to speed up set operations, but it does so by reducing
the size of the input sets, independent of how the inputs are
represented. These two approaches are complementary, and
combining them is an interesting direction.

Graph databases are increasingly used in many applications
and have proposed several techniques to optimize the query
plan [36], [37], [10], [38], [39]. Query optimization is an
orthogonal problem in our work.

IX. CONCLUSION

Graph pattern matching is a fundamental problem. Auxiliary
graphs represent a novel direction to reduce the running
time of graph pattern mining algorithms. It entails building
a pruned representation of the data graph that can be used
instead of the original graph to speed up query execution.
Auxiliary graphs are complementary to and can be combined
with other state-of-the-art algorithms for query scheduling and
code generation. The GraphMini system shows that auxiliary
graphs can speed up query execution time by up to 10× with
a low memory cost. Generating query execution code with
auxiliary graphs introduces a negligible compilation overhead.
Proactive graph pruning is a promising avenue to speed up
subgraph enumeration and potentially other graph pattern-
matching problems.

ACKNOWLEDGEMENTS

We want to thank Alexandra Meliou, Peter Haas, our shep-
herd Ana-Lucia Varbanescu, and the anonymous reviewers for
their insightful feedback. This work was supported by the
National Science Foundation under Grant No. CNS-2224054.
Any opinions, findings, conclusions, and recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foun-
dation. The work was also supported in part by an Amazon
Research Award and an Adobe Research Collaboration Grant.

ARTIFACTS

A. Artifact and experiment requirements

Our artifact is publicly available at https://zenodo.org/
record/8350615. The experiment compares the query execution

and compilation time of the baseline systems with those of
GraphMini.

Hardware. We run all the experiments on an AWS EC2
c6i.16xlarge instance equipped with a 32-core Intel Xeon
8375C CPU and 128GB host memory.

Software. We build all tested systems using GCC (v11.3)
with C++17 standard and -O3 optimization flag. We use
CMake (v3.20) as the build system. We use the original code
base of GraphPi and Dryadic for comparison, except for minor
changes in data loading and result output.

Dataset. We use six publicly available datasets in our
experiments: Wiki, YouTube, Patents, LiveJournal, Orkut, and
Friendster. All the datasets are downloaded from https://snap.
stanford.edu/data/index.html.

B. Procedures to reproduce the experiments

We provide scripts for installing dependent libraries, down-
loading datasets, and pre-processing the datasets into the
required format. See the document in the artifacts for more
details. We provide scripts to reproduce the benchmark exper-
iments, which contain running scripts to use Dryadic, GraphPi,
and GraphMini on different data graphs and query patterns.
We provide a document (README.md) in the artifact to
explain how to use these scripts to automate the experiment
reproduction process.

REFERENCES

[1] W. Fan, “Graph pattern matching revised for social network analysis,”
ACM International Conference Proceeding Series, 03 2012.

[2] T. A. B. Snijders, P. E. Pattison, G. L. Robins, and M. S.
Handcock, “New specifications for exponential random graph models,”
Sociological Methodology, vol. 36, no. 1, pp. 99–153, 2006. [Online].
Available: https://doi.org/10.1111/j.1467-9531.2006.00176.x

[3] N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and C. Sahinalp,
“Biomolecular network motif counting and discovery by color coding,”
Bioinformatics (Oxford, England), vol. 24, pp. i241–9, 07 2008.

[4] K. Jamshidi, R. Mahadasa, and K. Vora, “Peregrine: A pattern-aware
graph mining system,” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387548

[5] D. Mawhirter and B. Wu, “Automine: Harmonizing high-level
abstraction and high performance for graph mining,” in Proceedings of
the 27th ACM Symposium on Operating Systems Principles, ser. SOSP
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 509–523. [Online]. Available: https://doi.org/10.1145/3341301.
3359633

[6] D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu, “Graphzero:
Breaking symmetry for efficient graph mining,” 2019. [Online].
Available: https://arxiv.org/abs/1911.12877

[7] D. Mawhirter, S. Reinehr, W. Han, N. Fields, M. Claver, C. Holmes,
J. McClurg, T. Liu, and B. Wu, “Dryadic: Flexible and fast graph
pattern matching at scale,” in 30th International Conference on Parallel
Architectures and Compilation Techniques, PACT 2021, Atlanta, GA,
USA, September 26-29, 2021, J. Lee and A. Cohen, Eds. IEEE, 2021,
pp. 289–303. [Online]. Available: https://doi.org/10.1109/PACT52795.
2021.00028

[8] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in
graph algorithms using simd instructions,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: Association for Computing Machinery, 2018,
p. 1587–1602. [Online]. Available: https://doi.org/10.1145/3183713.
3196924

https://zenodo.org/record/8350615
https://zenodo.org/record/8350615
https://snap.stanford.edu/data/index.html
https://snap.stanford.edu/data/index.html
https://doi.org/10.1111/j.1467-9531.2006.00176.x
https://doi.org/10.1145/3342195.3387548
https://doi.org/10.1145/3341301.3359633
https://doi.org/10.1145/3341301.3359633
https://arxiv.org/abs/1911.12877
https://doi.org/10.1109/PACT52795.2021.00028
https://doi.org/10.1109/PACT52795.2021.00028
https://doi.org/10.1145/3183713.3196924
https://doi.org/10.1145/3183713.3196924

[9] T. Shi, M. Zhai, Y. Xu, and J. Zhai, “Graphpi: High performance graph
pattern matching through effective redundancy elimination,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020, pp. 1–14.

[10] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and
C. Ré, “Emptyheaded: A relational engine for graph processing,” ACM
Trans. Database Syst., vol. 42, no. 4, oct 2017. [Online]. Available:
https://doi.org/10.1145/3129246

[11] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,
“Flexminer: A pattern-aware accelerator for graph pattern mining,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 581–594.

[12] G. Dai, Z. Zhu, T. Fu, C. Wei, B. Wang, X. Li, Y. Xie, H. Yang,
and Y. Wang, “Dimmining: Pruning-efficient and parallel graph mining
on near-memory-computing,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser. ISCA ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
130–145. [Online]. Available: https://doi.org/10.1145/3470496.3527388

[13] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J.
Zaki, and A. Aboulnaga, “Arabesque: A system for distributed
graph mining,” in Proceedings of the 25th Symposium on Operating
Systems Principles, ser. SOSP ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 425–440. [Online]. Available:
https://doi.org/10.1145/2815400.2815410

[14] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J.
ACM, vol. 23, no. 1, p. 31–42, jan 1976. [Online]. Available:
https://doi.org/10.1145/321921.321925

[15] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: Association for Computing Machinery, 2010, p. 135–146.
[Online]. Available: https://doi.org/10.1145/1807167.1807184

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow frame-
work,” in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’14. USA: USENIX
Association, 2014, p. 599–613.

[18] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135–146. [Online]. Available:
https://doi.org/10.1145/2442516.2442530

[19] K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu, “Rstream:
Marrying relational algebra with streaming for efficient graph mining on
a single machine,” in Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’18. USA:
USENIX Association, 2018, p. 763–782.

[20] X. Chen, R. Dathathri, G. Gill, and K. Pingali, “Pangolin: An efficient
and flexible graph mining system on cpu and gpu,” Proc. VLDB
Endow., vol. 13, no. 8, p. 1190–1205, apr 2020. [Online]. Available:
https://doi.org/10.14778/3389133.3389137

[21] V. Dias, C. H. C. Teixeira, D. Guedes, W. Meira, and S. Parthasarathy,
“Fractal: A general-purpose graph pattern mining system,” in
Proceedings of the 2019 International Conference on Management
of Data, ser. SIGMOD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1357–1374. [Online]. Available:
https://doi.org/10.1145/3299869.3319875

[22] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth
study,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1083–1098.
[Online]. Available: https://doi.org/10.1145/3318464.3380581

[23] S. Sun, X. Sun, Y. Che, Q. Luo, and B. He, “Rapidmatch:
A holistic approach to subgraph query processing,” Proc. VLDB
Endow., vol. 14, no. 2, p. 176–188, oct 2020. [Online]. Available:
https://doi.org/10.14778/3425879.3425888

[24] L. Xiang, A. Khan, E. Serra, M. Halappanavar, and A. Sukumaran-
Rajam, “Cuts: Scaling subgraph isomorphism on distributed multi-
gpu systems using trie based data structure,” in Proceedings of
the International Conference for High Performance Computing,

Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476214

[25] H. He and A. K. Singh, “Graphs-at-a-time: Query language
and access methods for graph databases,” in Proceedings of the
2008 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 405–418. [Online]. Available:
https://doi.org/10.1145/1376616.1376660

[26] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph
matching by postponing cartesian products,” in Proceedings of the 2016
International Conference on Management of Data, ser. SIGMOD ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 1199–1214. [Online]. Available: https://doi.org/10.1145/2882903.
2915236

[27] M. Han, H. Kim, G. Gu, K. Park, and W.-S. Han, “Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching order,
and failing set together,” in Proceedings of the 2019 International
Conference on Management of Data, ser. SIGMOD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1429–1446.
[Online]. Available: https://doi.org/10.1145/3299869.3319880

[28] B. Bhattarai, H. Liu, and H. H. Huang, “Ceci: Compact embedding
cluster index for scalable subgraph matching,” in Proceedings of
the 2019 International Conference on Management of Data, ser.
SIGMOD ’19. New York, NY, USA: Association for Computing
Machinery, 2019, p. 1447–1462. [Online]. Available: https://doi.org/10.
1145/3299869.3300086

[29] W.-S. Han, J. Lee, and J.-H. Lee, “Turboiso: Towards ultrafast and
robust subgraph isomorphism search in large graph databases,” in
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 337–348. [Online].
Available: https://doi.org/10.1145/2463676.2465300

[30] H. Kim, Y. Choi, K. Park, X. Lin, S.-H. Hong, and W.-S. Han, “Versatile
equivalences: Speeding up subgraph query processing and subgraph
matching,” in Proceedings of the 2021 International Conference on
Management of Data, ser. SIGMOD ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 925–937. [Online].
Available: https://doi.org/10.1145/3448016.3457265

[31] H. Kim, J. Lee, S. S. Bhowmick, W.-S. Han, J. Lee, S. Ko, and M. H.
Jarrah, “Dualsim: Parallel subgraph enumeration in a massive graph on
a single machine,” in Proceedings of the 2016 International Conference
on Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1231–1245. [Online].
Available: https://doi.org/10.1145/2882903.2915209

[32] Z. Yang, L. Lai, X. Lin, K. Hao, and W. Zhang, “Huge: An efficient
and scalable subgraph enumeration system,” in Proceedings of the 2021
International Conference on Management of Data, 2021, pp. 2049–2062.

[33] S. Sun, Y. Che, L. Wang, and Q. Luo, “Efficient parallel subgraph
enumeration on a single machine,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 2019, pp. 232–243.

[34] M. Qiao, H. Zhang, and H. Cheng, “Subgraph matching: On
compression and computation,” Proc. VLDB Endow., vol. 11, no. 2,
p. 176–188, oct 2017. [Online]. Available: https://doi.org/10.14778/
3149193.3149198

[35] W. Guo, Y. Li, and K.-L. Tan, “Exploiting reuse for gpu subgraph
enumeration,” IEEE Transactions on Knowledge and Data Engineering,
2020.

[36] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu, “The
ubiquity of large graphs and surprising challenges of graph processing,”
Proc. VLDB Endow., vol. 11, no. 4, p. 420–431, dec 2017. [Online].
Available: https://doi.org/10.1145/3164135.3164139

[37] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski,
C. Barthels, G. Alonso, and T. Hoefler, “Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and graph
queries,” 2019. [Online]. Available: https://arxiv.org/abs/1910.09017

[38] D. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré,
and A. Rudra, “Join processing for graph patterns: An old dog with
new tricks,” in Proceedings of the GRADES’15, ser. GRADES’15.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2764947.2764948

[39] A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by
combining binary and worst-case optimal joins,” arXiv preprint
arXiv:1903.02076, 2019.

https://doi.org/10.1145/3129246
https://doi.org/10.1145/3470496.3527388
https://doi.org/10.1145/2815400.2815410
https://doi.org/10.1145/321921.321925
http://snap.stanford.edu/data
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.1145/3299869.3319875
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.14778/3425879.3425888
https://doi.org/10.1145/3458817.3476214
https://doi.org/10.1145/1376616.1376660
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1145/2882903.2915236
https://doi.org/10.1145/3299869.3319880
https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/3299869.3300086
https://doi.org/10.1145/2463676.2465300
https://doi.org/10.1145/3448016.3457265
https://doi.org/10.1145/2882903.2915209
https://doi.org/10.14778/3149193.3149198
https://doi.org/10.14778/3149193.3149198
https://doi.org/10.1145/3164135.3164139
https://arxiv.org/abs/1910.09017
https://doi.org/10.1145/2764947.2764948

	Introduction
	Background and Motivation
	Problem Definition
	Workflow of Graph Pattern Matching
	Challenges and Opportunities
	Challenges
	Opportunities

	Overview of GraphMini
	Proactive Online Pruning
	Basic Pattern Matching
	Auxiliary Graphs

	Pruning Cost Model
	Benefit and Cost of Pruning
	Online Cost Model

	Code Generation
	Identifying Auxiliary Graphs
	Compile-Time Optimizations

	Evaluation
	Experiment Settings
	GraphMini vs State-of-the-Arts
	Ablation Study
	Memory Consumption

	Related work
	Conclusion
	Artifact and experiment requirements
	Procedures to reproduce the experiments

	References

