
When Two Choices Are not Enough:
Balancing at Scale in Distributed Stream Processing

Muhammad Anis Uddin Nasir], Gianmarco De Francisci Morales�, Nicolas Kourtellis‡, Marco Serafini�

]KTH Royal Institute of Technology, Stockholm, Sweden
‡Telefonica Research, Barcelona, Spain

�Qatar Computing Research Institute, Doha, Qatar
anisu@kth.se, gdfm@acm.org, nicolas.kourtellis@telefonica.com, mserafini@qf.org.qa

Abstract—Carefully balancing load in distributed stream pro-
cessing systems has a fundamental impact on execution latency
and throughput. Load balancing is challenging because real-world
workloads are skewed: some tuples in the stream are associated
to keys which are significantly more frequent than others. Skew is
remarkably more problematic in large deployments: having more
workers implies fewer keys per worker, so it becomes harder to
“average out” the cost of hot keys with cold keys.

We propose a novel load balancing technique that uses a
heavy hitter algorithm to efficiently identify the hottest keys in
the stream. These hot keys are assigned to d ≥ 2 choices to ensure
a balanced load, where d is tuned automatically to minimize
the memory and computation cost of operator replication. The
technique works online and does not require the use of routing
tables. Our extensive evaluation shows that our technique can
balance real-world workloads on large deployments, and improve
throughput and latency by 150% and 60% respectively over the
previous state-of-the-art when deployed on Apache Storm.

I. INTRODUCTION

Stream processing is currently undergoing a revival,1
mostly as a result of recent advances in Distributed Stream
Processing Engines (DSPEs) such as Storm,2 S4,3 and Samza.4
The capabilities of modern engines even allow to take a unified
approach to streaming and batch computations, such as in
Flink [2] and Google Dataflow [1]. These technologies promise
high efficiency combined with high throughput at low latency.

The versatility achieved by DSPEs has enabled developers
to build a plethora of streaming applications. Examples range
from continuous query processing to online machine learning,
from ETL pipelines to recommender systems [8, 9]. While
the data streams that flow through these systems originate
from disparate application domains, they have one common
denominator: many real-world data streams are highly skewed.
Skew is one of the main obstacles to scaling distributed
computation, mainly because it creates load imbalance, and
the primary focus of this work.

To better appreciate the problem and its context, we first
need to understand how DSPE applications are structured.
Streaming applications are commonly represented in the form
of directed graphs that represent the data flow of the ap-
plication. The vertices of the graph are data transformations
(operators), and its edges are channels that route data between

1http://radar.oreilly.com/2015/04/a-real-time-processing-revival.html
2http://storm.apache.org
3http://incubator.apache.org/s4
4http://samza.apache.org

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

5 10 20 50 100

WP

Im
b

a
la

n
c
e

 I
(m

)

Workers

PKG
D-C
W-C

Fig. 1: Imbalance due to skew is more challenging to handle
at large scale. On this dataset from Wikipedia, PKG is able
to achieve low imbalance only at small scales, while the
techniques proposed in this paper, D-Choices (D-C) and W-
Choices (W-C), fare better at large scales.

operators. The data flowing along these edges is a stream, rep-
resented as a sequence of tuples, each associated with a key. To
achieve high throughput, modern distributed engines leverage
data parallelism by creating several instances of an operator
(workers) that process independent sub-streams. These sub-
streams are created by partitioning the incoming stream across
instances of the downstream operator via grouping schemes.

Among the existing grouping schemes, key grouping is
often used for stateful operators. This scheme guarantees
that all the tuples with the same key are processed by the
same operator instance, akin to MapReduce. Key grouping is
commonly implemented via hashing, which is known to cause
load imbalance across multiple workers, especially in presence
of skew in the input key distribution [3, 13].

Some solutions to balance load in DSPEs in presence
of skew have recently been proposed [15, 10, 17, 14]. In
particular, randomized techniques based on the “power of two
choices” [3], such as PARTIAL KEY GROUPING [15], have
found their way into mainstream DSPEs such as Apache Storm,
thanks to their combined simplicity and effectiveness. Unlike
key grouping, PKG associates each key to two possible operator
instances, and selects the least loaded of the two whenever a
tuple for a given key must be processed. Techniques leveraging
the power of two choices can adapt dynamically to workloads,
they do not require the DSPE to support operator migration, and
route keys to workers using hash functions rather than routing
tables, which can become very large and must be replicated
consistently across multiple upstream operators.

http://radar.oreilly.com/2015/04/a-real-time-processing-revival.html


In this paper, we tackle a serious scalability problem of
these techniques: using only two choices is not sufficient in
very large deployments. The source of the problem is that these
techniques require the amount of skew in the distribution of
keys to be inversely proportional to the size of the deployment.
For example, PKG requires the fraction of load generated by
the most frequent key to be less than the combined ideal (i.e.,
average) load supported by two workers. As the size of the
deployment grows, the average fraction of load per worker
decreases, so the fraction of load generated by the most fre-
quent key must also decrease for the approach to be effective.
Intuitively, the imbalance exists because at larger scales it
becomes increasingly difficult to average out the load among
multiple keys. Figure 1 shows this problem occurring while
processing a real-world dataset from Wikipedia. While at small
scales (5 or 10) PKG manages to keep the system balanced,
at larger scales (20, 50 or 100 workers) the imbalance grows
significantly and gets close to 10% (Section II formally defines
the notion of imbalance).

The scalability problem is exacerbated for workloads that
are extremely skewed, as for example in graph streaming
applications where some vertices are much more popular than
others.5 Consider, for example, that under a Zipf distribution
(which models the occurrence of words in natural language)
with exponent z = 2.0, the most frequent key represents nearly
60% of the occurrences, and thus PKG is unable to guarantee
ideal load balance for any deployment larger than 3 workers,
as shown in the original analysis [15].

The straightforward alternative to using two choices is
shuffle grouping, a grouping scheme which distributes the
messages in a round-robin fashion irrespective of the keys.
Shuffle grouping is the best choice for stateless operators.
However, it comes with a high cost when used for stateful
operators: it is necessary to replicate the state associated with
keys potentially on each worker, since each worker could
have to process each key. The memory overhead of shuffle
grouping can thus become directly proportional to the number
of workers used, therefore hindering scalability.

We propose two new streaming algorithms for load bal-
ancing, called D-Choices and W-Choices, that enable DSPEs to
scale to large deployments while supporting stateful operators.
As shown in Figure 1, D-Choices and W-Choices achieve very
low imbalance (smaller than 0.1%) even on very large clusters.
Our algorithms reduce the memory footprint by estimating the
minimum number of choices per key for cases where two
are not enough. The intuition behind our techniques is that,
for highly skewed inputs, most of the load on the system is
generated by a handful of “hot” keys. Thus, while the long tail
of low-frequency keys can be easily managed with two choices,
the few elements in the head needs additional choices. Using
more than two choices requires answering two main questions:
(i) “which are the keys that need more than two choices?” and
(ii) “how many choices are needed for these keys?”.

Our proposed method identifies and partitions the most
frequent keys in the distribution, which are the main reason
for load imbalance at scale. It uses a streaming algorithm to
identify “heavy hitter” keys that require a larger number of

5See http://konect.uni-koblenz.de/statistics/power for a repository of com-
mon graph datasets and their power law exponent.

workers, and allows them a number of choices d ≥ 2 which is
minimal yet sufficient for load balancing. For the rest of the
keys it uses the standard two choices. To find the heavy hitters,
we leverage the well-known SpaceSaving algorithm [12], and
its recent generalizations to the distributed setting [5].

The threshold used to find the heavy hitters is an important
parameter in determining the memory cost of the approach,
since these keys are mapped to a larger number of workers.
Our evaluation examines a range of potential thresholds and
finds that a single threshold is sufficient for most settings. This
threshold requires only a very small number of keys to be
assigned to more than two workers. In fact, if the stream is
very skewed the hot keys are only a handful, otherwise if the
stream is not very skewed, two choices are sufficient for most
keys, even for some of the most frequent ones.

Our two algorithms differ in the number of choices pro-
vided for the hot keys. W-Choices allows as many choices as
the number of workers. Since the heavy hitter algorithm selects
only few hot keys, this solution performs well if the state
associated with each key is not extremely large. D-Choices is a
more sophisticated strategy that tries to estimate the minimum
number of choices d for hot keys that is sufficient to ensure a
balanced load. The estimation considers several factors, such
as the relative frequency of the hot keys, and the overlaps
among the sets of choices of different keys. In addition, since
the mapping of keys to workers responsible for processing
them is typically done using hash functions, we need to take
into account their collision probability. Our analysis provides a
lower bound on the expected value of d which is very accurate.
We verify our bound via an extensive evaluation that compares
the value of d obtained from the analysis with the optimal value
of d found empirically in several simulated settings.

We evaluate our methods on real workloads and show
that they allow scaling to large deployments, whereas existing
approaches using only two choices do not scale to 50 or
more workers. This increased scalability translates into an
improvement of up to 150% in throughput, and up to 60%
in latency, over PKG when deployed on a real Apache Storm
cluster. The improvements are even larger over key grouping:
230% in throughput and 75% in latency.

In summary, this paper makes the following contributions:

• We propose two new algorithms for load balancing of
distributed stream processing systems; the algorithms are
tailored for large-scale deployments and suited to handle
the skew in real-world datasets;

• We provide an accurate analysis of the parameters that
determine the cost and effectiveness of the algorithms;

• An extensive empirical evaluation6 shows that our proposal
is able to balance the load at large scale and in the presence
of extreme skew;

• The reduced imbalance translates into significant improve-
ments in throughput and latency over the state-of-the-art
when deployed on Apache Storm.

6Code available at https://github.com/anisnasir/SLBSimulator and https://
github.com/anisnasir/SLBStorm

http://konect.uni-koblenz.de/statistics/power
https://github.com/anisnasir/SLBSimulator
https://github.com/anisnasir/SLBStorm
https://github.com/anisnasir/SLBStorm


II. PRELIMINARIES

A. The Dataflow Model

Most modern DSPEs run on clusters of machines that com-
municate by exchanging messages. These DSPEs run streaming
applications that are usually represented in the form of a
directed acyclic graph (DAG), which consists of a set of
vertices and a set of edges. The vertices in the DAG (called
operators) are a set of data transformations that are applied on
an incoming data stream, whereas the edges are data channels
between vertices which connect the output of one operator
to the input of the following one. In order to achieve high
performances, DSPEs run multiple instances of these operators
and let each instance process a portion of the input stream,
i.e., a sub-stream (Figure 2).

For simplicity, we specify our notation by considering a
single stream between a pair of operators, i.e., a single edge
connecting two vertices. Given a stream under consideration,
let the set of upstream operator instances be called sources and
be denoted as S, and the set of downstream operator instances
be called workers and denoted asW , and their sizes be |S| = s
and |W| = n. Although the number of messages is unbounded,
at any given time we denote the number of messages in the
input stream as m.

The input stream is fed into a DSPE as a sequence of
messages 〈t, k, v〉, where t is a timestamp, k is a key, and
v is a value. The keys in the messages are drawn from a
(skewed) distribution D over a finite key space K, i.e., some
of the keys appear more frequently than others. Let pk be
the probability of drawing key k from D. We define the rank
of a key r(k) as the number of keys that have a higher or
equal probability of appearing according to D (with ties broken
arbitrarily). We identify the key by its rank in D, and therefore,
by definition the probability of keys being drawn decreases as
follows: p1 ≥ p2 ≥ . . . ≥ p|K|, with

∑
k∈K pk = 1.

B. Stream Partitioning

Sub-streams are created by partitioning the input stream
via a stream partitioning function Pt : K → N, which maps
each key in the key space to a natural number, at a given time
t. This number identifies the worker responsible for processing
the message (we identify the setW of workers with a prefix of
the naturals). Each worker is associated to one or more keys,
and keys associated to the same worker are said to be grouped
together by a grouping scheme. Henceforth, we consider three
already existing grouping schemes:

• Key Grouping (KG): This scheme ensures that messages
with the same key are handled by the same downstream
worker. KG is usually implemented via hashing.

• Shuffle Grouping (SG): This scheme evenly distributes
messages across the available downstream workers, thus
ensuring ideal load balance. SG is usually implemented via
round-robin selection of workers.

• Partial Key Grouping (PKG) [15]: The scheme ensures
that messages with the same key are processed by at most
two workers. It is implemented by using two separate hash
functions that produce two candidate workers. The message
is then routed to the least loaded of the two workers.

Source

Source

Worker

WorkerStream

Worker
Rank

Fr
eq
ue
nc
y

Tail

Head

Fig. 2: Imbalance generated by high skew. Most of the load
is due to the head of the distribution.

Load imbalance. We use a definition of load similar to others
in the literature (e.g., Flux [18] and PKG [15]). At time t, the
load of a worker w is the fraction of messages handled by the
worker up to t:

Lw(t) =
|{〈τ, k, v〉 | Pτ (k) = w ∧ τ ≤ t}|

m
.

We define the imbalance at time t as the difference between
the maximum and the average load of the workers:

I(t) = max
w

Lw(t)− avg
w
Lw(t), w ∈ W.

Our goal is to find a stream partitioning function Pt that
minimizes the maximum load L(m) of the workers, which is
equivalent to minimizing the imbalance I(m) since the average
load 1/n is independent of Pt.

III. SOLUTION OVERVIEW

The solution we explore in this paper revolves around the
idea of detecting at runtime the hot keys or “heavy hitters”,
which comprise the head of the key distribution, and treat them
differently from the tail when it comes to mapping them on
workers for processing. In particular, we track the head H of
the key distribution in a distributed fashion across sources, and
then split the keys belonging to the head across d ≥ 2 workers.

To instantiate this solution, we need to define the size
of the head (i.e., the cardinality of H) and the number of
choices per key that should be used (i.e., the value of d). These
two quantities jointly affect the load on the workers. Given a
skewed key distribution, there will be a combination of number
of keys considered |H| and number of choices d, that minimize
the overall load imbalance across workers, while adding the
smallest possible overhead. However, such an ideal setup is
difficult to reach at runtime, in a real system that analyzes
streams of data with an unknown key distribution.

In order to tackle this multi-objective problem, we first
define a threshold θ that separates the head from the tail of
the distribution. Then, we study the problem of finding d,
the number of choices for the head that produces a low load
imbalance. Next, we discuss these two issues.



 0

 10

 20

 30

 40

 50

 60

 70

 0.4  0.8  1.2  1.6  2

C
a

rd
in

a
lit

y 
o

f 
th

e
 h

e
a

d

Skew

θ=1/(5n)
θ=2/n

Fig. 3: Number of keys in the head of the distribution for 50
and 100 workers for a Zipf distribution with z = 0.1 . . . 2.0,
|K| = 104 and m = 107.

A. Finding the Head

One important issue in our solution is how to define the
threshold θ that splits the head of the distribution in the input
stream from the tail. Formally, we define the head H as the
set of keys that are above a frequency threshold:

H = {k ∈ K | pk ≥ θ} .

As discussed in the introduction, algorithms based on the
power of two choices make assumptions on the maximum skew
in the key distribution. For instance, PKG assumes an upper
bound on the frequency of the most frequent key. This bound
is inversely proportional to the total number of choices in the
system, i.e., to the total number of workers in our setting. We
want to select the threshold θ such that the head includes all
the keys violating the assumptions of PKG. Therefore, we focus
on the space where PKG falls short, according to its analysis.

The first bound provided by the analysis states that if
p1 > 2/n, then the expected imbalance at time m is lower-
bounded by (p12 −

1
n )m, which grows linearly with m [15].

This imbalance exists because the load generated by the most
frequent key exceeds the capacity of two workers. Therefore,
clearly, all the keys that exceed the capacity of two workers
belong to the head, and thus, θ ≤ 2/n. The second bound in the
analysis states that if p1 ≤ 1/5n, then the imbalance generated
by PKG is bounded, with probability at least 1−1/n. Therefore,
we do not need to track keys whose frequency is smaller than
this bound, and so θ ≥ 1/5n.

Given these theoretical bounds, we evaluate thresholds in
the range 1/5n ≤ θ ≤ 2/n. As shown in Section V, most
values in this range provide a satisfactory level of imbalance,
so we pick a conservative value of 1/5n as the default. Albeit
conservative, this value still results in a small cardinality for
the head. Even if keys follow a uniform distribution where all
keys have probability 1/5n, the head will be comprised only by
5n keys. In more skewed distributions, the size is substantially
smaller. Figure 3 shows the cardinality of H for several Zipf
distributions, for the two extremes of the range of θ.

These numbers show that we we need to pay the price of
added replication only for a small number of keys. In order to
make our proposal work completely online, we use a streaming
algorithm to track the head and its frequency at runtime. In
particular, we use the SpaceSaving algorithm [12], a counter-
based algorithm for heavy hitters which can be extended to
work in a distributed setting [5].

B. Number of Choices for each Head Key

Recall that we want to manage the head of the distribution
differently from the tail, in order to achieve better load balance
across workers. In our proposed solution, both the head and
tail make use of a Greedy-d process, but apply different d per
key. Next we outline the basic principle behind this process.

Greedy-d. Let F1, . . . ,Fd be d independent hash functions
that map K → [n] uniformly at random. We define the
Greedy-d process as follows: at time t, the t-th message
(whose key is kt) is placed on the worker with minimum
current load among the candidate ones F1(kt), . . . ,Fd(kt),
i.e., Pt(kt) = argmini∈{F1(kt),...,Fd(kt)} Li(t), where ties are
broken arbitrarily.

Our method leverages this process to map keys to workers
by hashing a key with a set of d hash functions, and assigning
the key to the least loaded of the d available options. In our
solution, the tail has d = 2 choices as in PKG. However, the
head can have d ≥ 2, depending on the frequency of the keys.

We propose two different algorithms, depending on the
value of d (see Algorithm 1). These algorithms differ in their
memory and aggregation overhead.

• D-Choices: This algorithm adapts to the particular dis-
tribution of frequencies in the head, and uses a Greedy-
d process to handle the head, with d < n. We show
analytically how to pick d in the following section.

• W-Choices: This algorithm allows n = |W| workers for the
head. Conceptually, it is equivalent to setting d � n lnn
for a Greedy-d scheme, since this condition guarantees that
there is at least one item in each bucket when using an ideal
hash function. In practice, there is no need to hash the keys
in the head, and the algorithm can simply pick the least
loaded among all workers.

The pseudocode of the algorithm used by senders to
determine the destination worker for their output messages is
reported in Algorithm 1. UPDATESPACESAVING invokes the
heavy hitters algorithm of [12] and returns the set of the current
heavy hitters. FINDOPTIMALCHOICES determines the number
of choices for heavy hitter keys as explained in Section IV-A.
MINLOAD selects the id of the worker with lowest load among
the ones passed as arguments. The load is determined based
only on local information available at the sender, as in [15].
The algorithm uses d different hash functions Fi.

We also test our algorithms against a simple but competi-
tive baseline, which has the same overhead as W-Choices:

• Round-Robin: This algorithm performs round-robin as-
signment for the head across all available n workers. In
comparison to W-Choices, this algorithm assigns the head
to workers in a load-oblivious manner.

IV. ANALYSIS

In this section, we analyze the D-Choices algorithm in
order to find the number of choices d that enables achieving
load balance. In addition, we discuss the memory requirement
and overhead for the different algorithms.



Algorithm 1: Stream partitioning algorithm.
upon message m = 〈k, v〉
H ← UPDATESPACESAVING(k)
d← 2 // Default as in PKG

if k ∈ H then
if D-CHOICES then

d← FINDOPTIMALCHOICES()
else if W-CHOICES then

d← n
w ← MINLOAD(F1(k), . . . ,Fd(k))
send(w,m)

A. Setting d for D-Choices

We first determine how to express d analytically and then
discuss how the function FINDOPTIMALCHOICES computes a
solution for that expression.

For this analysis, we assume that the key distribution D and
the threshold θ are given. Recall that we aim at minimizing
d in order to reduce the memory and aggregation overheads
created by using a large number of choices, which are roughly
proportional to d × |H|. Therefore, we would like to know
which is the smallest number of choices d that can lead to
imbalance below some threshold ε.

More formally, our problem can be formulated as the
following minimization problem:

minimize
d

f(d;D, θ) = d× |HD,θ| , (1)

subject to E
d
[I(m)] ≤ ε . (2)

In the problem formulation, we emphasize that H is a function
of D and θ. Because both D and θ are given, the objective
function of the problem reduces to simply minimizing d. Ad-
ditionally, we employ a constraint on the expected imbalance
generated when using the Greedy-d process for H.

In order to attack the problem, we would like to express
the imbalance I(m) as a function of d. However, the load on
each worker Li, from which the imbalance is computed, is a
random variable that depends on the key assignment and the
specific distribution, both of which are random. The Greedy-
d process adapts dynamically to the load conditions, so it is
hard to express the load analytically as a function of d. Instead,
we perform a lower bound analysis on the expected load, and
find analytically what are the necessary conditions to obtain a
feasible solution. We then show empirically in Section V that
the optimal values for d are very close to this lower bound.

Proposition 4.1: If the constraint of the optimization prob-
lem in Eqn. (2) holds, then:∑
i≤h

pi +

(
bh
n

)d ∑
h<i≤|H|

pi +

(
bh
n

)2 ∑
i>|H|

pi ≤ bh
(
1

n
+ ε

)
,

(3)

where bh = n− n
(
n− 1

n

)h×d
, ∀kh ∈ H.

Proof: Let Lw be the load of worker w. By definition,
avgw(Lw) = 1/n since we consider normalized load that sums
to 1 over all workers. Since I(m) = maxw(Lw)− avgw(Lw)

by definition, and therefore Lw − 1/n ≤ I(m), we can rewrite
Eqn. (2) as:

Lw −
1

n
≤ ε, ∀w ∈ W. (4)

To continue our analysis, we would like to express the load
on each worker as a function of the key distribution, however
the load is a random variable that depends on the mix of keys
that end up on the given worker, and the dynamic conditions of
the other workers. Nevertheless, while we cannot say anything
about the load of a single worker, we can lower bound the
(expected) load of a set of workers that handle a given key.

Let Wi = {F1(ki), . . . ,Fd(ki)} be the set of workers that
handle ki. Because workers are chosen via hashing, some of
the d choices might collide, and thus it might be that |Wi| ≤ d.
Let b = |Wi| be the expected size of Wi.

We now derive a lower bound on the cumulative (asymp-
totic) load on this set of workers. This load consists of pi
(by definition), plus the load generated by any key kj whose
choices completely collide with ki, i.e., Wj ⊆ Wi. Note that
keys that partially collide with ki may also add up to the load
of the workers in Wi, but we can ignore this additional load
when deriving our lower bound. The completely colliding keys
kj may come from the head or from the tail. We take into
account these two cases separately and express a lower bound
on the expected cumulative load on Wi as:

E

[ ∑
w∈Wi

Lw

]
≥ pi +

(
b

n

)d ∑
j≤|H|
j 6=i

pj +

(
b

n

)2 ∑
j>|H|

pj . (5)

This equation expresses the frequency of ki (pi) plus the
(expected) fraction of the distribution that completely collide
with ki. A key in the head has d independent choices, while
a key in the tail has only 2 independent choices. Each choice
has a probability of colliding with Wi of b/n where b is the
size of Wi, as we assume ideal hash functions.

We now use this lower bound to express a necessary
condition for Eqn. (4), and thus for Eqn. (3). By summing
Lw for all w ∈ Wi, Eqn. (4) implies the following condition:

E

[ ∑
w∈Wi

Lw

]
≤ b

n
+ b · ε. (6)

A necessary condition for this inequality to hold can be
obtained by using the lower bound of Eqn. (5), which results
in the following expression:

pi +

(
b

n

)d ∑
j≤|H|
j 6=i

pj +

(
b

n

)2 ∑
j>|H|

pj ≤
b

n
+ b · ε. (7)

We can generalize the previous condition by requiring it to
hold on the set of workers handling any prefix p1, . . . , ph of h
keys of the head. This results in a larger number of necessary
conditions and thus in a potentially tighter bound, depending
on the distribution of keys. Similarly to Eqn. (6), we obtain a
set of constraints, one for each prefix of length h:



E

 ∑
w∈

⋃
i≤hWi

Lw

 ≤ bh
n

+ bh · ε, ∀kh ∈ H, (8)

where bh = E[|
⋃
h≤iWh|] is the expected number of workers

assigned to a prefix of the head of length h. We can use
once again the lower bound of Eqn. (5) to obtain a necessary
condition for the previous expression to hold as follows:∑
i≤h

pi +

(
bh
n

)d ∑
h<i≤|H|

pi +

(
bh
n

)2 ∑
i>|H|

pi ≤ (9)

≤ E

 ∑
w∈

⋃
i≤hWi

Lw

 ≤ bh
n

+ bh · ε, ∀kh ∈ H.

We derive bh in Appendix A as follows:

bh = E

∣∣∣∣∣∣
⋃
i≤h

Wi

∣∣∣∣∣∣
 = n− n

(
n− 1

n

)h×d
. (10)

Finally, after substituting bh we obtain the final set of
bounds of Eqn. (3), one for each prefix of the head H.

Solving analytically for d is complex, so we use an
alternative approach to implement FINDOPTIMALCHOICES.
We simply start from d = p1 × n, which is a simple lower
bound on d that derives from the fact that we need p1 ≤ d/n,
and increase d until all constraints are satisfied. In practice,
the tight constraints are the ones for h = 1, the most frequent
key, and for h = |H|, when considering the whole head. The
latter, is especially tight for very skewed distributions, where
the head represents a large fraction of the total load. In this
case, we need bh ≈ n with high probability, but, as well know,
this happens only when h× d � n lnn. Given that maxh is
small, as the distribution is skewed andH has small cardinality,
we need a large d. However, having d ≥ n is not sensible, so
when this condition is reached, the system can simply switch
to the W-Choices algorithm.

B. Memory Overhead

We now turn our attention to the cost of the algorithms
under study, as measured by the memory overhead required
to achieve load balance. Henceforth, we refer mainly to the
memory overhead, however note that when splitting a key in
d separate partial states, if reconciliation is needed, there is
also an aggregation cost proportional to d. The two costs are
proportional, so we focus our attention only on the first one.

Overhead on Sources. All three algorithms have the same
cost on the sources. The sources are responsible for forwarding
messages to the workers. Each source maintains a load vector
storing local estimations of the load of every worker. This
estimation is based only on the load each source sends, and it is
is typically a very accurate approximation of the actual global
load of workers obtained considering all sources [15]. Storing
the load vector requires O(n) memory. Thus, the total memory
required for estimating the load of workers at each source is
s×n. These costs are the same for all algorithms, even though

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.8  1.2  1.6  2

F
ra

ct
io

n
 o

f 
w

o
rk

e
rs

 (
d
/n

)

Skew

n=5
n=10
n=50

n=100

Fig. 4: Fraction of workers used by D-Choices for the head as
a function of skew z ∈ {0.1, . . . , 2.0}. Values for |K| = 104,
m = 107, and ε = 10−4.

Round-Robin uses the load information only for the tail.
Alongside the load estimation, each source runs an instance
of the SpaceSaving algorithm to estimate the frequency of the
head keys in the input streams. The SpaceSaving algorithm
requires O(1) memory and O(1) processing time per message.

Overhead on Workers. Without loss of generality, let us
assume the memory required to maintain the state for each key
is unitary. Recall the set of choices available per key:7

• For d = 2, each key is assigned to at most two workers,
as in PKG. The upper bound on the memory requirement
to store |K| unique items is 2× |K|.

• For 2 < d < n, each key is assigned to at most d
workers, as in D-Choices. The upper bound on the memory
requirement is d× |H|+ 2× |K \ H|.

• For d� n lnn, each key is assigned to all the n workers,
as in W-Choices and Round-Robin. The upper bound on
the memory requirement is n× |H|+ 2× |K \ H|.

From these formulas, it is clear that D-Choices always has a
smaller overhead than the other algorithms, although it is larger
than PKG. But how much is the overhead in theory? By using
Inequality (3), we can find the appropriate value for d, in case
the distribution is known apriori. Figure 4 shows the overhead
of D-Choices for the required d, as a fraction of the number
of workers, as a function of the skew. We vary the exponent of
a Zipf distribution z ∈ {0.1, . . . , 2.0}, with |K| = 104 unique
keys, and m = 107 messages. The plot shows that D-Choices
reduces the number of workers compared to W-Choices and
Round-Robin. Especially at larger scales, n = 50 and n = 100
workers, d is always smaller than n.

Lastly, Figure 5 and Figure 6 show the estimated memory
used by D-Choices and W-Choices with respect to PKG and
SG respectively. All the algorithms (including PKG) need an
aggregation phase, so the comparison is fair. We estimate the
memory for PKG and SG using memPKG =

∑
k∈Kmin(fk, 2)

and memSG =
∑
k∈Kmin(fk, n) respectively.

We derive three main observations from the results of
Figure 5 and Figure 6. First, both D-Choices and W-Choices
require an amount of memory similar to PKG when the number
of workers is small. However, this behavior changes when the
number of workers increases. For instance, for 100 workers

7Ignoring that some keys in the tail have frequency smaller than n.



 0

 10

 20

 30

 0.4  0.8  1.2  1.6  2M
e
m

o
ry

 w
.r

.t
 P

K
G

 (
%

)

Skew

n=50

D-C
W-C

 0.4  0.8  1.2  1.6  2

Skew

n=100

Fig. 5: Memory overhead for D-Choices (D-C) and W-Choices
(W-C) with respect to PKG as a function of skew, for different
number of workers n ∈ {50, 100}. Values for |K| = 104

and ε = 10−4. In the worst case, D-C and W-C use at most
30% more memory than PKG, and D-C uses considerably less
memory than W-C in most cases.

-100

-90

-80

-70

 0.4  0.8  1.2  1.6  2

M
e
m

o
ry

 w
.r

.t
 S

G
 (

%
)

Skew

n=50

D-C
W-C

 0.4  0.8  1.2  1.6  2

Skew

n=100

Fig. 6: Memory overhead for D-Choices (D-C) and W-Choices
(W-C) with respect to SG as a function of skew, for different
number of workers n ∈ {50, 100}. Values for |K| = 104 and
ε = 10−4. In the worst case, D-C and W-C still use 80% less
memory than SG.

W-Choices requires up to 25% more memory compared to
PKG. Second, D-Choices requires less memory than W-Choices
when the skew is moderately high (note that ratios lower than
10−2 are not plotted). Nevertheless, both curves approach the
same memory overhead at very high skew.

Note that the bump in Fig. 5 primarily depends on the size
of the head (as shown in Fig 3) and how a Zipf distribution
with finite support is defined. Intuitively, as the skew grows
larger, initially more keys pass the frequency threshold θ, but
later only a few keys become dominant (to the limit, only one
key is in the head with p1 → 1).

Third, the overhead compared to SG is negligible, espe-
cially at larger scales. Both D-Choices and W-Choices require
only a fraction of the cost of shuffle grouping, fulfilling one
of the two desiderata for our solution. The next section shows
both proposed algorithms also achieve low imbalance, which
is their main purpose.

V. EVALUATION

In Section IV-B we have derived an analysis of the memory
overhead of our proposed techniques. We now assess their
load balancing performance using both simulations and a real
deployment. In so doing, we answer the following questions:

Q1: How to decide the threshold θ that defines the head of the
distribution?

Q2: How close is the estimated value of d for D-C to an
empirical optimum?

TABLE I: Summary of the datasets used in the experiments:
number of messages, number of keys, and probability of the
most frequent key (p1).

Dataset Symbol Messages Keys p1(%)

Wikipedia WP 22M 2.9M 9.32
Twitter TW 1.2G 31M 2.67
Cashtags CT 690k 2.9k 3.29

Zipf ZF 107 104,105,106 ∝ 1∑
x−z

TABLE II: Notation for the algorithms.

Symbol Algorithm Head vs. Tail

D-C D-Choices
Specialized on headW-C W-Choices

RR Round-Robin

PKG Partial Key Grouping Treats all keys equally
SG Shuffle Grouping

Q3: How do the proposed algorithms compare in terms of load
imbalance?

Q4: What is the overall effect of proposed method on the
throughput and latency of a real DSPE?

A. Experimental Setup

Datasets. Table I summarizes the datasets used. We use three
real-world datasets, extracted from Wikipedia and Twitter. The
Wikipedia dataset (WP)8 is a log of the pages visited during
a day in January 2008 [21]. Each visit is a message and the
page’s URL represents its key. The Twitter dataset (TW) is
a sample of tweets crawled during July 2012. Each tweet is
split into words, which are used as the key for the message.
Additionally, we use a Twitter dataset that is comprised of
tweets crawled in November 2013. The keys for the messages
are the cashtags in these tweets. A cashtag is a ticker symbol
used in the stock market to identify a publicly traded company
preceded by the dollar sign (e.g., $AAPL for Apple). This
dataset allows to study the effect of drift in the skew of the
key distribution. Finally, we generate synthetic datasets (ZF)
with keys drawn from Zipf distributions with exponent in the
range z ∈ {0.1, . . . , 2.0}, and with a number of unique keys
in the range |K| ∈ {104, 105, 106}.

Simulation. We process the datasets by simulating the simplest
possible DAG, comprising one set of sources (S), one set of
workers (W), and one intermediate partitioned stream from
sources to workers. The DAG reads the input stream from
multiple independent sources via shuffle grouping. The sources
forward the received messages to the workers downstream
via the intermediate stream, on which we apply our proposed
grouping schemes. Our setting assumes that the sources per-
form data extraction and transformation, while the workers
perform data aggregation, which is the most computationally
expensive part of the DAG, and the focus of the load balancing.

8http://www.wikibench.eu/?page id=60

http://www.wikibench.eu/?page_id=60


TABLE III: Default parameters for the algorithms.

Parameter Description Values

n Number of workers 5, 10, 20, 50, 100
s Number of sources 5
ε Imbalance tolerance (D-Choices) 10−4

θ Threshold defining the head 2
n
, . . . , 1

8n

Algorithms. Table II defines the notations used for different
algorithm, while Table III defines values of different pa-
rameters that we use for the experiments. For most of the
experiments we use load imbalance as defined in Section II
as a metric to evaluate the performance of the algorithms.
Unlike the algorithms in Table II, other related load balancing
algorithms [18, 7, 23, 4, 6] require the DSPE to support operator
migration. Many DSPEs, such as Apache Storm, do not support
migration, so we omit these algorithms from the evaluation.

B. Experimental Results

Q1. To find the right threshold θ, we run an experiment with
the W-Choices algorithm. We use W-C because it is potentially
the best one in terms of imbalance, as it is able to use the
entire set of workers to distribute the load. We compare it with
Round-Robin, which has the same cost in terms of memory.
We vary the threshold by halving it, starting from 2/n down
to 1/8n. For this experiment, we use the ZF dataset in order to
verify the effect of skew.

Figure 7 shows the load imbalance as a function of skew,
for different number of workers. For both algorithms, reducing
the threshold (i.e., considering a larger head) reduces the
imbalance, and increasing the skew (i.e., larger z) increases
the imbalance, as expected. However, W-C achieves ideal load
balance for any threshold θ ≤ 1/n, while RR exhibits a
larger gradient of results. This behavior is more evident at
larger scales, where RR starts generating imbalance even under
modest levels of skew.

The difference in results between the two algorithms is
entirely due to the fact that W-C uses a load-sensitive algorithm
to balance the head, which adapts by taking into consideration
also the load of the tail. Conversely, RR balances the head and
tail separately. As a result, while the head is perfectly balanced,
the tail has less flexibility in how to be balanced.

As additional evidence, Figure 8 shows the workload
generated by head and tail separately for PKG, W-C, and RR.
To ease visual inspection, we show the case for n = 5; the
other cases follow a similar pattern. This plot is obtained for
θ = 1/8n, i.e., the lowest threshold in our experiments. As
expected, the most frequent key in PKG overloads the two
workers responsible for handling it, thus giving rise to high
load imbalance. Instead, W-C mixes the head and tail across
all the workers, and achieves ideal load balance. Finally, RR
splits the head evenly across the workers, but falls short of
perfect balance, as represented by the horizontal dotted line.

In summary, even for low thresholds, W-C behaves better
than RR, and a threshold of 1/n is enough for W-C to achieve
low imbalance in any setting of skew and scale. In the
following experiments we set the threshold to its default value

θ = 1/5n. This conservative setting gives the algorithms the
largest amount of freedom in setting d, and guarantees that
any imbalance is due to the choice of d rather than the choice
of θ, which determines the cardinality of H.

Q2. In this experiment, we evaluate the parameter d for D-
C. We compare how far the d value as computed by the D-C
algorithm is from an empirically-determined optimal value. To
find the optimum, we execute the Greedy-d algorithm with all
the possible values of d, i.e., 2, . . . , n and find the minimum
d that is required to match the imbalance achieved by W-C.

Figure 9 shows this optimum in comparison to the value
of d for D-C as computed by the algorithm described in
Section IV. The results clearly show that D-C is very close
to the optimal d, thus supporting our analysis. In all cases,
D-C uses a d slightly larger than the minimum, thus providing
good load balance at low cost.

Q3. We now examine the performance of the proposed algo-
rithms in terms of load imbalance. We use the ZF datasets to
control for the skew, and additionally, we evaluate the proposed
algorithms on several real-world datasets, i.e., WP, TW and CT.
We compare D-C and W-C to RR and PKG as baselines.

Figure 10 shows the average imbalance as a function of
skew for several possible settings of number of workers and
number of keys. The number of keys does not influence
the imbalance, thus suggesting that |K| = 104 is a large
enough number to give the algorithms enough freedom in their
placement, for these particular distributions. On the other hand,
skew and scale clearly play an important role. The problem
becomes harder as both z and n increase. W-C is the best
performer in terms of imbalance, as it manages to keep it
constantly low irrespective of the setting. D-C and RR perform
similarly, and both manage to keep the imbalance much lower
than PKG for larger values of skew and scale. However, recall
that D-C does so at a fraction of the cost of RR.

Figure 11 shows similar results for the real-world datasets
(we omit RR as it is superseded by W-C). All algorithms
perform equally well when the number of workers is small.
Instead, at larger scales (n = 20, 50, 100) PKG generates higher
load imbalance compared to D-C and W-C. As expected, W-C
provides better load balance compared to D-C. However, recall
that for D-C the level of imbalance is also determined by the
tolerance ε. As each source executes the algorithm indepen-
dently, in the worst case we should expect an imbalance of
s× ε, plotted as a horizontal dotted line.

The Twitter cashtags dataset (CT) behaves differently from
TW and WP. This dataset is characterized by high concept
drift, that is, the distribution of keys changes drastically
throughout time. This continuous change poses additional
challenges to our method, especially for the heavy hitters
algorithm that tracks the head of the distribution. Overall,
the dataset is harder to balance for all methods, however
the relative performance of the various algorithms is still as
expected. D-C works better than PKG at larger scales, and W-C
provides even better load balance.

Finally, Figure 12 allows to observe the behavior of the
proposed algorithms over time. This experiment enables us to
study the effect of drift in the key distribution. We compare the



10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.4  0.8  1.2  1.6  2

W-C

Im
b
a
la

n
c
e
 I
(m

)

n=5

2/(n)
1/(n)

1/(2n)
1/(4n)
1/(8n)

 0.4  0.8  1.2  1.6  2

W-C

n=10

 0.4  0.8  1.2  1.6  2

W-C

n=50

 0.4  0.8  1.2  1.6  2

W-C

n=100

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.4  0.8  1.2  1.6  2

RR

Im
b
a
la

n
c
e

 I
(m

)

Skew

 0.4  0.8  1.2  1.6  2

RR

Skew

 0.4  0.8  1.2  1.6  2

RR

Skew

 0.4  0.8  1.2  1.6  2

RR

Skew

Fig. 7: Load imbalance as a function of skew z, for different thresholds θ, for W-C and RR. W-C provides a better load balance
than RR at high skew, especially for larger scale deployments, while having the same memory overhead. For this experiment,
the stream has |K| = 104 unique keys, and m = 107 messages.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5

L
o

a
d

 (
%

)

Server

PKG

1 2 3 4 5

Server

W-C

1 2 3 4 5

Server

RR

head
tail

ideal

Fig. 8: Load generated by head and tail when using PKG, W-C, and RR. The horizontal dotted line represents the ideal even
distribution of the load (1/n). For this experiment, the threshold is set to θ = 1/8n, and the stream has m = 107 messages with
|K| = 104 drawn from a Zipf distribution with exponent z = 2.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4  0.8  1.2  1.6  2

F
ra

c
ti
o
n
 o

f 
w

o
rk

e
rs

 (
d
/n

)

Skew

n=50

Minimal-d
D-C

 0.4  0.8  1.2  1.6  2

Skew

n=100

Fig. 9: Comparison of the d value for D-C to the minimum
value of d required to match the imbalance of W-C (Min-d).
The value computed by D-C is very close to the minimum for
all settings.

imbalance over time for PKG, D-C, and W-C on the real-world
datasets. The plot shows the imbalance for several settings,
and confirms our previous observations. Larger scales are
challenging for PKG, but are handled well by D-C and W-C,
and the concept drift in the CT dataset makes the task harder.
Nevertheless, overall the imbalance remains relatively stable
throughout the simulation.

Q4. To quantify the impact of our proposed techniques, D-
C and W-C, on a real DSPE, we implement them in Apache
Storm and deploy them on a cluster. We compare them with
the standard groupings: KG, SG, and PKG. The Storm cluster
consists of 9 machines (1 master and 8 slaves), where each

machine has 16 VCPUs. Each slave machine has 16 execution
slots (for a total of 8× 16 = 128 slots in the cluster).

We use a simple streaming application that consist of two
operators: sources that generate the input stream, and workers
that perform aggregation on the stream. Concretely, we use
48 sources and 80 workers. The sources generate the stream
from a Zipf distribution with skew z ∈ {1.4, 1.7, 2.0}, |K|
= 104, and m = 2 × 106. This aggregation-like application
is representative of many data mining algorithms, such as
computing statistics for classification, or extracting frequent
patterns. To emulate some CPU consumption, we add a fixed
delay of 1ms to the processing of each message (this delay
represents 1/10-th of a disk seek9). We choose this value for
the delay to bring the application to the saturation point of the
cluster. We report overall throughput and end-to-end latency
by taking the average over multiple iterations.

Figure 13 shows the throughput for the experiment. As
expected, KG achieves the lowest throughput among all the
groupings. PKG performs better than KG, however it is not
able to match SG, and pays a price for the imbalance. Instead,
our proposed techniques (D-C and W-C) are able to match
the throughput of SG (at a fraction of its cost). As expected,
increasing the skew makes the problem harder for both KG and
PKG. In the best case, D-C and W-C achieve a throughput 1.5
times higher than PKG, and 2.3 times higher than KG.

9http://brenocon.com/dean perf.html

http://brenocon.com/dean_perf.html


10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.4  0.8  1.2  1.6  2

|K|=10
4

Im
b

a
la

n
c
e

 I
(m

)

n=5

PKG
D-C
W-C
RR
sxε

 0.4  0.8  1.2  1.6  2

n=10

 0.4  0.8  1.2  1.6  2

n=50

 0.4  0.8  1.2  1.6  2

n=100

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.4  0.8  1.2  1.6  2

|K|=10
5

Im
b

a
la

n
c
e

 I
(m

)

 0.4  0.8  1.2  1.6  2  0.4  0.8  1.2  1.6  2  0.4  0.8  1.2  1.6  2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0.4  0.8  1.2  1.6  2

|K|=10
6

Im
b

a
la

n
c
e

 I
(m

)

Skew

 0.4  0.8  1.2  1.6  2

Skew

 0.4  0.8  1.2  1.6  2

Skew

 0.4  0.8  1.2  1.6  2

Skew

Fig. 10: Load imbalance on the ZF datasets for PKG, D-C, W-C, and RR as a function of skew. The plots are shown for several
combinations of settings of number of workers n and number of unique keys |K| (number of messages m = 107).

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

5 10 20 50 100

WP

Im
b
a
la

n
c
e
 I

(m
)

Workers

PKG
D-C
W-C

sxε

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

5 10 20 50 100

TW

Workers

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

5 10 20 50 100

CT

Workers

Fig. 11: Imbalance on the real-world datasets WP, TW and CT for PKG, D-C, and W-C as a function of the number of workers.
Larger scale deployments are inherently harder to balance.

Finally, Figure 14 shows the difference among the algo-
rithms in terms of latency. The plot reports the maximum of
the per-worker average latencies, along with the 50th, 95th,
and 99th percentiles across all workers. This message latency
primarily depends on the time each message waits in the input
queue of the worker before being processed, since we keep
computation time per message constant to 1ms.

While with modest skew the difference is small, for larger
skews KG suffers from very high latency. Given that the
worker handling the most frequent key needs to process a
large fraction of the stream, longer queues form at this worker,
and this result is to be expected. Clearly PKG fares better,
introducing about 50% of the latency of KG at the highest
skew. However, for all settings it is not able to match the
latency provided by SG, which can be up to 3 times smaller.
Conversely, both D-C and W-C are able to provide latencies
very close to the ones obtained by SG. In the best case, D-C
and W-C reduce the 99th percentile latency of PKG by 60%,
and the latency of KG by over 75%.

Overall, both D-Choices and W-Choices are able to achieve
the same throughput and latency of shuffle grouping at just

a fraction of the cost in terms of memory. These results
suggest that both algorithms could easily replace the default
implementation of shuffle grouping in most DSPEs, and provide
a form of “worker affinity” for states related to a given key
without compromising on the load balance.

VI. RELATED WORK

Recently, there has been considerable interest in the load
balancing problem for DSPEs when faced with a skewed input
stream [10, 17]. Similarly to our work, previous solutions
employ heavy hitter algorithms, and provide load balancing for
skewed inputs when partitioned on keys. Gedik [10] develops
a partitioning function (a hybrid between explicit mapping and
consistent hashing) for stateful data parallelism in DSPEs that
leverages item frequencies to control migration cost and imbal-
ance in the system. The author proposes heuristics to discover
new placement of keys on addition of parallel channels in the
cluster, while minimizing the load imbalance and the migration
cost. Rivetti et al. [17] propose an algorithm for a similar
problem with an offline training phase to learn the best explicit
mapping. Comparatively, we propose a light-weight streaming
algorithm that provide strong load balancing guarantees, and



10
-8

10
-7

10
-6

 0  10  20  30

Dataset:TW

Im
b

a
la

n
c
e

 I
(t

)

n=5

10
-8

10
-7

10
-6

 0  10  20  30

n=10

10
-9

10
-8

10
-7

10
-6

10
-5

 0  10  20  30

n=20

10
-9

10
-8

10
-7

10
-6

 0  10  20  30

n=50

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0  10  20  30

n=100

10
-6

10
-5

10
-4

 0  10  20  30  40

Dataset:WP

Im
b

a
la

n
c
e

 I
(t

)

PKG
D-C
W-C

10
-6

10
-5

10
-4

 0  10  20  30  40
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0  10  20  30  40
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0  10  20  30  40
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 0  10  20  30  40

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60  70  80

Dataset:CT

Im
b

a
la

n
c
e

 I
(t

)

Hour

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60  70  80

Hour

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60  70  80

Hour

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60  70  80

Hour

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  10  20  30  40  50  60  70  80

Hour

Fig. 12: Load imbalance over time for the real-world datasets TW, WP, and CT.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

KG PKG D-C W-C SG

T
h
ro

u
g
h
p
u
t 
(e

ve
n
ts

/s
e
co

n
d
)

z=1.4
z=1.7
z=2.0

Fig. 13: Throughput on a cluster deployment on Apache Storm
for KG, PKG, SG, D-C, and W-C on the ZF dataset, for sample
values of z, with n = 80, |K| =104, and m = 2× 106.

which does not require training or active monitoring of the
load imbalance. We show that by splitting the head of the
distribution on multiple workers, and the tail distribution on at-
most two workers, the techniques in this paper achieve nearly
ideal load balance.

The load balancing problem has been extensively studied in
the theoretical research community [3, 20, 22]. There have also
been several proposals to solve the load balancing problem for
peer-to-peer systems [16, 11]. The E-Store system explores the
idea of handling hot tuples separately from cold tuples in the
context of an elastic database management system [19]. Most
existing load balancing techniques for DSPEs are analogous
to key grouping with rebalancing [18, 7, 23, 4, 6]. Flux
monitors the load of each operator, ranks servers by load, and
migrates operators from the most loaded to the least loaded
servers [18]. Aurora* and Medusa propose policies to operator
migration in DSPEs and federated DSPEs [7]. Borealis uses a
similar approach, but also aims at reducing the correlation of
load spikes among operators placed on the same server [23].
This correlation is estimated by using load samples taken
in the recent past. Similarly, Balkesen et al. [4] propose a
frequency-aware hash-based partitioning to achieve load bal-

ance. Castro Fernandez et al. [6] propose integrating common
operator state management techniques for both checkpointing
and migration. Differently from these techniques, the ones
proposed in this work do not require any rebalancing, operator
migration, or explicit mapping of the keys to servers (which
necessitates potentially huge routing tables).

VII. CONCLUSION

We studied the problem of load balancing for distributed
stream processing engines when deployed at large scale. In
doing so, we analyzed how highly skewed data streams exac-
erbate the problem, and how this affects the throughput and
latency of an application. We showed that existing state-of-
the-art techniques fall short in these extreme conditions.

We proposed two novel techniques for this tough problem:
D-Choices and W-Choices. These techniques employ a stream-
ing algorithm to detect heavy hitter for tracking the hot keys
in the stream, which constitute the head of the distribution
of keys, and allows those hot keys to be processed on larger
set of workers. In particular, W-Choices allows a head key
to be processed on entire set of workers, while D-Choices
places a key on a smaller number of workers. This number is
determined by using an easy-to-compute lower bound derived
analytically and verified empirically.

We evaluated our proposal via extensive experimentation
that covers simulations with synthetic and real datasets, and
deployment on a cluster running Apache Storm. Results show
that the techniques in this paper achieve better load balance
compared to the state-of-the-art approaches. This improvement
in balance translates into a gain in throughput of up to 150%,
and latency of up to 60% over PKG for the cluster setup. When
compared to key grouping, the gains are even higher: 230%
for throughput and 75% for latency. Overall, D-Choices and
W-Choices achieve the same throughput and latency as shuffle
grouping, at just a fraction of the cost in terms of memory.



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

KG PKG D-C W-C SG

L
a
te

n
c
y
 (

m
s
)

z=1.4

max avg
p50
p95
p99

KG PKG D-C W-C SG

z=1.7

KG PKG D-C W-C SG

z=2.0

Fig. 14: Latency (average and percentiles) on a cluster deployment on Apache Storm for KG, PKG, SG, D-C, and W-C on the
ZF datasets, for sample values of z, with n = 80, |K| = 104, and m = 2× 106.

REFERENCES

[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, and S. Whittle. The Dataflow Model: A Practical
Approach to Balancing Correctness, Latency, and Cost in
Massive-Scale, Unbounded, Out-of-Order Data Processing.
PVLDB, 8(2):1792–1803, 2015.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,
F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl,
F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter,
M. Höger, K. Tzoumas, and D. Warneke. The Stratosphere
platform for big data analytics. The VLDB Journal, 23(6):
939–964, 2014.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced
allocations. SIAM J. Comput., 29(1):180–200, 1999.

[4] C. Balkesen, N. Tatbul, and M. T. Özsu. Adaptive input
admission and management for parallel stream processing. In
DEBS, pp. 15–26. ACM, 2013.

[5] R. Berinde, P. Indyk, G. Cormode, and M. J. Strauss.
Space-optimal heavy hitters with strong error bounds. ACM
TODS, 35(4):1–28, 2010.

[6] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In SIGMOD, pp.
725–736, 2013.

[7] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik. Scalable distributed
stream processing. In CIDR, volume 3, pp. 257–268, 2003.

[8] G. De Francisci Morales. SAMOA: A Platform for Mining
Big Data Streams. In RAMSS, 2013.

[9] G. De Francisci Morales and A. Bifet. SAMOA: Scalable
Advanced Massive Online Analysis. JMLR, 16(Jan):149–153,
2015.

[10] B. Gedik. Partitioning functions for stateful data parallelism in
stream processing. The VLDB Journal, 23(4):517–539, 2014.

[11] D. R. Karger and M. Ruhl. Simple efficient load balancing
algorithms for peer-to-peer systems. In SPAA, pp. 36–43, 2004.

[12] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient
computation of frequent and top-k elements in data streams.
In ICDT, pp. 398–412, 2005.

[13] M. Mitzenmacher. The power of two choices in randomized
load balancing. IEEE TPDS, 12(10):1094–1104, 2001.

[14] M. A. U. Nasir, G. De Francisci Morales, D. Garcı́a-Soriano,
N. Kourtellis, and M. Serafini. Partial key grouping:
Load-balanced partitioning of distributed streams. CoRR,
abs/1510.07623, 2015.

[15] M. A. U. Nasir, G. De Francisci Morales, D. Garcia-Soriano,
N. Kourtellis, and M. Serafini. The power of both choices:
Practical load balancing for distributed stream processing
engines. In ICDE, pp. 137–148, 2015.

[16] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and
I. Stoica. Load balancing in structured p2p systems. In
Peer-to-Peer Systems II, pp. 68–79. Springer, 2003.

[17] N. Rivetti, L. Querzoni, E. Anceaume, Y. Busnel, and
B. Sericola. Efficient key grouping for near-optimal load
balancing in stream processing systems. In DEBS, pp. 80–91,
2015.

[18] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran, and M. J.
Franklin. Flux: An adaptive partitioning operator for
continuous query systems. In ICDE, pp. 25–36, 2003.

[19] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore,
A. Aboulnaga, A. Pavlo, and M. Stonebraker. E-store:
Fine-grained elastic partitioning for distributed transaction
processing systems. Proceedings of the VLDB Endowment, 8
(3):245–256, 2014.

[20] K. Talwar and U. Wieder. Balanced allocations: the weighted
case. In STOC, pp. 256–265, 2007.

[21] G. Urdaneta, G. Pierre, and M. van Steen. Wikipedia
workload analysis for decentralized hosting. Computer
Networks, 53(11):1830i–1845, 2009.

[22] U. Wieder. Balanced allocations with heterogenous bins. In
SPAA, pp. 188–193, 2007.

[23] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load
distribution in the borealis stream processor. In ICDE, pp.
791–802, 2005.

APPENDIX A
EXPECTED SIZE OF A WORKER SET

The process of chosing the workers for a key, is akin to
placing d items, uniformly at random and with replacement,
into n possible slots, with d < n (in our case, if d = n we
should switch to the W-Choices algorithm). We now derive the
expected number of slots b filled with at least one item.

As usual, it is easier to answer the complementary question:
how many slots are left empty? Each slot has probability
pempty =

(
1− 1

n

)d
to be left empty at the end of d independent

placements. Therefore, the expected number of empty slots is

E[Xempty] =

n∑
i=1

pempty = n

(
n− 1

n

)d
.

The number of full slots can be computed by subtracting the
number of empty slots from the total number of slots,

b = E[Xfull] = n− E[Xempty] = n− n
(
n− 1

n

)d
.

The expression of bh can be obtained by replacing d with h×d
in the previous expression, since we want to place h×d items.


	Introduction
	Preliminaries
	The Dataflow Model
	Stream Partitioning

	Solution Overview
	Finding the Head
	Number of Choices for each Head Key

	Analysis
	Setting d for D-Choices
	Memory Overhead

	Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	Appendix A: Expected Size of a Worker Set

