
1

Application-Level Diagnostic and Membership
Protocols for Generic Time-Triggered Systems

Marco Serafini, Péter Bokor, Neeraj Suri TU Darmstadt, Germany,
Jonny Vinter SP, Sweden, Astrit Ademaj TU Wien, Austria, Wolfgang Brandstätter Audi, Germany,

Fulvio Tagliabò Centro Ricerche Fiat, Italy, Jens Koch Airbus, Germany

Abstract— We present on-line tunable diagnostic and member-
ship protocols for generic time-triggered (TT) systems to detect
crashes, send/receive omission faults and network partitions.
Compared to existing diagnostic and membership protocols
for TT systems, our protocols do not rely on the single-fault
assumption and also tolerate non fail-silent (Byzantine) faults.
They run at the application level and can be added on top of
any TT system (possibly as a middleware component) without
requiring modifications at the system level. The information on
detected faults is accumulated using a penalty/reward algorithm
to handle transient faults. After a fault is detected, the likelihood
of node isolation can be adapted to different system configu-
rations, including configurations where functions with different
criticality levels are integrated. All protocols are formally verified
using model checking. Using actual automotive and aerospace
parameters, we also experimentally demonstrate the transient
fault handling capabilities of the protocols.

Index Terms— Diagnosis, Membership, Time-Triggered Sys-
tems, Transient Faults.

I. INTRODUCTION

IN both automotive and aerospace X-by-wire applications, TT
platforms such as Flexray [15], TTP/C [21], SAFEbus [18]

and TT-Ethernet [19] are increasingly being adopted. Some TT
platforms disclaim to provide distributed diagnostic and member-
ship services, such as FlexRay, or utilize their specific system-
level properties to develop customized solutions, like TTP/C [21]
or SAFEbus. Instead, we define on-line diagnostic and member-
ship protocols as add-on application level modules that can be
integrated as plug-in middleware modules onto any TT system,
without (potentially problematic [31]) interferences with other
functionalities or other applications. Our protocols (a) only use
network-level error detection information that is made available
at the application level by TT platforms, (b) do not impose
constraints on the scheduling of the system, and (c) have low
bandwidth requirements. The protocols can be tuned to meet
customized fault coverage and latency requirements. For TT
platforms, such as FlexRay and TT-Ethernet, that do not provide
a standardized diagnostic or membership protocol, our add-on
protocol represents a viable and flexible solution to provide such
add-on functionalities.

The key purpose of a diagnostic protocol, in particular if this
is used for safety critical subsystems, is to identify faulty nodes
within a small diagnostic delay. Nonetheless, a diagnostic protocol
also needs to consider resource availability and to avoid declaring
correct components as faulty in case of transient faults, which
are becoming increasingly frequent [10]. An “ideal” diagnostic
protocol would exclude only nodes with permanent internal faults.
In practice, however, these faults do not always manifest as

permanent faults at the interface of the node (e.g. crashes). They
can also manifest as multiple, subsequent intermittent faults (e.g.
sparse message omissions) which, to external observers, appear
similar to transient faults.

Our diagnostic protocol uses a penalty/reward (p/r) algo-
rithm to distinguish between transient fault and intermittent or
permanent faults with stochastically predictable accuracy and
coverage [30]. Predictability is provided by a stochastic model
that considers faults not only over a single protocol run but
over multiple runs (using an extended fault model). Different
from existing diagnostic approaches which rely on system-specific
heuristics for handling transient faults (e.g. [18], [34]) and like
the α-count model of [6], [7], our generic p/r model can be
applied and tuned to each specific implementation in a well-
defined manner. However, different from α-count, our FDIR
(Fault Detection, Isolation and Reconfiguration) model does not
assume that the maximum duration of transient faults is bounded
and known. It admits closed-form analytical solutions which can
be easily evaluated by hand without using modeling tools, and
it considers systems running multiple applications with varied
criticalities. In this paper, we show for the first time how to
integrate a p/r algorithm with an on-line distributed diagnostic
protocol.

Analogous to diagnosis is the membership problem [17], [2],
which consists of identifying the set of nodes (called membership
view) that have received the same history of messages. We
show that a variant of our protocol can act as a membership
service and detect the formation of multiple cliques of receivers
with inconsistent information. Similar to diagnosis, membership
protocols also need to consider availability. Our membership
protocols are the first ones where the ensured consistency degree
can be tuned, using the p/r algorithm, to avoid over-reactions
to transient faults. The protocol is also extended to detect and
tolerate both permanent and transient network partitioning.

An important aspect of our diagnostic and membership proto-
cols is providing consistent diagnostic and membership informa-
tion to all nodes even in presence of worst-case (Byzantine) faults.
A common feature of TT systems is that non fail-silent faults at
the network level are turned into fail-silent faults. This ensures
that correct nodes can still communicate despite the presence of
non fail-silent faulty nodes. SAFEbus, for example, uses double-
redundant Bus Interface Units to detect and isolate non fail-silent
faults [18], whereas TTP/C can use a star network configuration
with redundant bus guardians [1]. For this reason, many previous
membership protocols for TT systems assume only benign faults
(crashes, send and receive omissions) [21], [3], [14]. Although
we assume fail-silence at the network level, this does not rule out
the presence of non-detected errors at the application level where

2

our protocols run. These errors can stem from simple memory
corruptions and can result in error propagation at the protocol
level if fail-silence is assumed [4]. Our generic protocols are
designed to tolerate multiple application-level faults, both silent
and non-silent. The number of tolerated faults grows with the
total number of nodes in the system.

The properties of all presented protocols are formally verified
per hand-proofs and model checking. We have also implemented
the diagnostic and membership protocols in a prototype, in-
corporating actual automotive and aerospace parameters. Using
physical fault injection, we experimentally validate the properties
of the protocols under several fault scenarios and show how to
tune the parameters of the p/r algorithm in a realistic environment.

Overall, our diagnostic and membership protocols are the first
with the following key properties:
• Can run on every TT system at application level without

imposing scheduling constraints
• Can tolerate Byzantine faults and multiple benign faults
• Are integrated with a tunable p/r algorithm for better tran-

sient fault handling
• Have been validated for several fault scenarios using actual

automotive and aerospace parameters
• Have been formally verified using a model checker.
The paper is organized as follows. Following the related work

in Sec. II, we introduce the system and fault models in Sec. III.
The tunable add-on diagnostic protocol and its properties are
presented in Sec. IV. The protocol is extended to a membership
protocol in Sec. V. The results of formal verification based on
model checking are reported in Sec. VI. Sec. VII describes the
experimental validation of both protocols. We detail parameter
tuning in Sec. VIII. Sec. IX discusses the portability of the
middleware to different TT platforms.

II. RELATED WORK

The general diagnosis problem was formulated in the PMC
model [27], where a set of entities test each other to collect
sufficient information to locate the faulty nodes. In on-line, real-
time settings the comparison approach is recommended [25],
where the same functionality is executed on different nodes and
the results are compared.

Multiple research efforts have targeted diagnosis for specific
error models, and for improving specific attributes such as latency
reduction, coverage and bandwidth. The family of diagnostic
protocols for generic synchronous systems proposed by Walter
et al. [34] considers a frame-based communication scheme where
nodes exchange messages in synchronous parallel rounds using
a fully connected topology and unidirectional links. Similar to
consensus [23], [2], all nodes exchange their local view on the
correctness of the messages received by the other nodes and
combine them using hybrid voting to achieve consistent diagnosis.

We adapt the on-line diagnosis approach of [34] as a middle-
ware service for TT systems, where multiple nodes may access
a shared broadcast bus using a TDMA communication scheme.
Our add-on protocol explicitly takes into account the internal
scheduling of each node and the overall global communication
scheduling of the system, and can be adapted to both frame-
based and TDMA communication schemes. Different from [34],
we explicitly consider the cases of communication blackouts that
can arise if particularly long transient bursts corrupt all sending
slots in a round. We also show how to modify the protocol to

provide membership information even in presence of network
partitioning. Finally, our protocol uses the new p/r algorithm to
handle transient faults based on the criticality of the applications
executing on different nodes.

The problem of group membership is often defined similar to
diagnosis [17]. Cristian [11] proposes a membership protocol for
synchronous crash-only systems that is based on an expensive
fault-tolerant atomic broadcast primitive to achieve consistency.
Such an approach is impractical in TT systems due to its
high latency and bandwidth requirement. A membership protocol
specifically designed for TTP/C systems was proposed by Kopetz
et al. [21], proved correct in [3], formally verified using theorem
proving in [26] and model-checked using parameterized verifi-
cation in [8]. The fault model is the “single fault assumption”:
The protocol does not have to tolerate simultaneous faults or non
fail-silent nodes. The protocol allows identification of one fault in
the communication of a message and also detects the formation
of different cliques of nodes which cannot communicate with
each other. The latency is two communication slots in the case
of sender faults and two rounds in case of receiver faults. The
message complexity is O(N) bits per message and O(N2) bits
per round, where N is the number of system nodes. In order to
save bandwidth, TTP/C implementations of the algorithm encode
the messages in the CRC. If a (possibly transient) faulty node
is detected it is generally restarted. However this can generate a
window of vulnerability to subsequent failures. If clique detection
is not executed, the message complexity of the protocol can
be reduced to one bit per message [29]. An extension of the
TTP/C protocol was proposed by Ezichelvan and Lemos [14] to
tolerate up to half of senders being simultaneously faulty with a
latency of three rounds. A more recent protocol also requires a
majority of active nodes, handles benign faults, and is extended
to work in systems with event-triggered scheduling [5]. Authors
of [32] identify a class of non fail-silent faults which are not fully
tolerated by the TTP/C membership protocol even if bus guardians
are used, and fix the problem under the single fault assumption.
Our protocols tolerate multiple coincident non-Byzantine and
Byzantine faults and have the same message complexity as
existing ones, with the exception of the partitionable membership
protocol which requires O(2N) bits per message. Due to their
add-on and generic nature, our protocols have a higher latency.

Current TT platforms offer different levels of integration of on-
line diagnosis in the system. SAFEbus compares the outcomes of
double-redundant Bus Interface Units to detect and isolate arbi-
trary faults at the network level. An evolution of SAFEbus which
achieves lower hardware costs using a braided ring topology is
introduced in [16]. The Time Triggered Architecture (TTA) [20]
integrates membership with clock synchronization. Experimental
evaluation has pointed out some limitations of this integrated
approach [31]. The TTA approach of tolerating transient upsets
by detecting faulty nodes and by letting them converge to a
correct state is discussed in [32]. Such rejuvenation techniques are
orthogonal to our work, which only focuses on fault detection, but
can be easily integrated with it. The current FlexRay specifica-
tion [15] allows the use of a Network Management Vector whose
functionalities are analogous to membership, and leaves it up to
the applications to implement this functionality. Our protocols
represent a viable and generic solution in this context.

3

III. SYSTEM AND FAULT MODEL

System Model. We assume a synchronous distributed system
model where there are known upper bounds on the execution
time of jobs and on communication delays. We assume that each
correct node is equipped with a local clock of high precision,
i.e., the drift between clock time and physical time is bounded.
Clocks of different nodes are synchronized. In the traditional
synchronous, or frame-based, computational model [24], [28],
nodes execute synchronous rounds in a lock-step manner. During
each round the nodes alternate two phases, first send and receive
their messages in parallel (communication phase), and only then
compute the received messages in parallel (computation phase).
Many TT systems, however, do not enforce this strict lock-step
model. In order to maximize the utilization of the computational
resources of a node, communication and computation within one
node are executed in parallel if possible. These systems also allow
overlapping computation and communication phases at different
nodes in order to use cheaper shared communication buses which
require sequential access.

We consider a generic model that encompasses most TT
platforms. The system consists of N nodes having unique IDs
{1, ..., N}. We assume that each node is assigned a time window,
called sending slot, in a larger periodic time window called round.
Each node has exactly one sending slot per round. We assume
without loss of generality that node IDs are assigned consistently
with the order of the sending slots in the round: Node j does
not complete its sending slot before node i if i < j. A round
starts with the beginning of its first sending slot. The periodic
global communication schedule defines when each slot begins and
terminates. It is static and defined at design time. For example, in
classic frame-based systems all nodes have the same sending slot,
whereas sending slots of different nodes never overlap in TDMA
systems such as [21] or [15].

Each node has a communication controller which executes
the global communication schedule. We refer to the subsystem
composed by the communication controller and the communi-
cation buses as network level, while the rest of the system is
the application level. Network-level communication among jobs
running on different nodes is abstracted through a vector of shared
variables 〈v1, . . . , vN 〉, called interface variables, available at
each node. Variable vi can only be written by jobs running on
node i. When the sending slot of node i is reached, the value of
vi at node i is broadcasted by the communication controller of
i. All other nodes update their local copy of the variable as soon
as the sending slot is completed. Nodes can identify the correct
senders of the messages they receive.

The network can not undetectably forge or corrupt messages.
Error detection on the value domain is usually ensured by sending
redundant data along with the message, for example by adding
CRC codes. Also, due to the synchrony of the system, it is always
possible to accurately detect missing messages by using timeouts.
In all TT platforms, the communication controllers detect errors at
network level and signal them to the applications through validity
bits that are paired to each interface variable. The communication
controller of node j sets the validity bit of vi to 0 iff node j was
not able to receive the last message sent by i that was supposed
to update vi, and to 1 otherwise. For i = j, the communication
controller checks if it can itself read the messages it sends, for
example by using a local collision detector.

Besides the global communication schedule, each node has

its own internal node schedule that determines when jobs are
executed in the round. Similar to the global communication
schedule, the node schedule is static and defined at design time.
The node schedule can have an effect on the “freshness” of the
interface variables, which is the round where the values of the
interface variables were sent. For example, if a job is executed
during a round it may read some values sent in the previous
rounds and some values send in the current one. The node
schedule also determines the freshness of the data sent on the bus.
A job running on node i which is started at round k and writes
data onto its interface variable is able to send this data during the
same round k only if it is scheduled to start before the beginning
of the sending slot of i in k. To increase the portability of our add-
on protocol, our protocol is parameterized and does not constrain
the scheduling of nodes. Diagnostic jobs running at node i have
two parameters, li and send curr roundi, to represent different
node schedules. The use of these parameters is discussed in detail
in Section IV.

Fault Model. Nodes are categorized based on the faults they
encounter. Correct nodes follow the specification of our protocols,
have a correct state, and can correctly communicate with the other
correct nodes. Obedient nodes follow the specification of our
protocols and have a correct state, but they may suffer detectable
faults at the network level which prevent them from sending
messages to any node. Correct nodes are thus also obedient.
Byzantine nodes do not follow the specification of our protocols
and can have any state. Note that there is no error propagation at
the network level. Faulty nodes are fail-silent at the network level
and therefore can not disrupt the network-level communication
among other nodes.

Faults refer to communication errors as they are observed at the
application level. They are partitioned into three classes, based on
their severity and symmetry [33]: Symmetric benign, symmetric
Byzantine and asymmetric. Symmetric benign (or simply benign)
faults produce errors which can be locally detected by all nodes in
the system. We say that there is a local error detection between
node i and node j at round r if j is obedient, i broadcasts a
message at round r, and the validity bit of the local copy of the
variable vi held by j is set to 0 after the sending slot of i at round r

is completed. We say that node i suffers a symmetric benign fault,
or a send omission, at round r if there is a local error detection
between i and all obedient nodes at round r. For example, a
crashed node permanently displays benign faults. Obedient nodes
can also be benign faulty.

Node i suffers a symmetric Byzantine fault at round r if i

sends an erroneous message at round r which is not conformal
to the system specification, all obedient nodes receive the same
erroneous message from i at round r, and there is no local error
detection between i and any other obedient node at round r.
An example of symmetric Byzantine fault is when an undetected
memory error in node i corrupts some value which is then written
into vi and broadcasted to all other nodes. Network-level error
detection can not determine that the message is erroneous, so the
corrupted value is consistently received by all obedient nodes.

Node i suffers an asymmetric fault at round r in all remaining
cases where i sends a message and either there is a local detection
between i and some obedient node j in round r, or some obedient
node j receives in round r an erroneous message from i which
is not conformal to the system specification. In the worst case,
asymmetric faults can be unconstrained Byzantine faults [22].

4

round k

(diagnosed round)

round k+1 round k+2 round k+3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

If a FAULT OCCURS in

a slot of round k...

sending

slot
Global comm. scheduling

Internal scheduling of diagnostic jobs

within nodes (unconstrained)

Phase 1

... each diagnostic job has the chance

to observe it before the end of round k+1 ...

Phase 2

... to send its local syndrome

before the end of round k+2 ...

Phases 3, 4 and 5

... and to receive and analyze all local syndromes on round k before

 the end of round k+3. Penalty/reward counters can be now updated

Diagnostic jobs

Node 1
Node 2
Node 3
Node 4

Fig. 1. High level overview of the diagnostic protocol in a system with TDMA access and four nodes

We say that an obedient node j suffers a receive omission at
round r if some node i is asymmetric faulty and there is a
local error detection between i and j. An asymmetric fault can
result in any number of receive omissions. Asymmetries in the
reception of messages can be an effect, for example, of Slightly-
Off-Specification faults (SOS) [1], when the clock of a node is
close to the allowed offset and thus the messages it sends are seen
as timely only by a subset of the receivers. Another example is
when electro-magnetic interferences disturb only part of the bus.

We classify nodes based on the faults they encounter over one
execution of the protocol. If a node displays different type of
faults, we consider the most severe one — benign being the
least severe and asymmetric the most. Let a, s and b represent
the maximum number of asymmetric, symmetric Byzantine and
benign faulty nodes over one execution. Our diagnostic and
membership protocols of Sections IV and V assume that the
number of nodes in the system is N > 2a + 2s + b + 1 and that
a ≤ 1 if s + a > 0. No assumption on b is needed if s + a = 0.

A membership protocol to tolerate permanent and transient
network partitions is discussed in Appendix I.

IV. THE ON-LINE DIAGNOSTIC PROTOCOL

The purpose of the on-line diagnostic protocol is to detect and
exclude faulty nodes from the system at run-time. The protocol
outputs at each round the set of active nodes which are deemed
operational, and requires no inputs from other applications. It is
composed of two algorithms. The first algorithm forms a consis-
tent health vector to consistently locate benign faulty senders,
the second accumulates the diagnostic information using the
p/r algorithm to distinguish (in a probabilistic manner) between
healthy and unhealthy nodes.

At each round, each node i runs the diagnostic job diagi which
sends a non-replicated diagnostic message dmi and receives all
the other interface variables 〈dm1, . . . , dmN 〉. The communica-
tion controller provides a validity bit for each interface variable
dmj sent from diagj to diagi using its local error detection
mechanisms. By checking the validity bits of the diagnostic
messages, the protocol diagnoses communication errors. The local
syndrome of node i at round k is the binary N -tuple containing
the validity bits of the messages sent to i at round k − 1. The
diagnostic message dmi contains the local syndrome broadcasted
by node i and its size is O(N).

The diagnostic protocol consists of five phases:

1) Local detection: Communication errors are locally detected
by observing the local validity bits of the diagnostic mes-
sages. A new local syndrome is formed as a binary N -tuple.

2) Dissemination: The local syndrome is broadcasted using the
diagnostic message dmi.

3) Aggregation: Collect all local syndromes dmj corresponding
to the same previous diagnosed round. Form a diagnostic
matrix for that round where row i is the local syndrome
sent from node i and column j is a vector representing the
opinion on node j of all other nodes.

4) Analysis: A binary N -tuple called consistent health vector,
which contains the consistent distributed view on the health
of all system nodes in the diagnosed round, is calculated.
To combine the local syndromes sent by different nodes, a
hybrid voting [34], [23] over the columns of the diagnostic
matrix is performed.

5) Update counters: Based on the consistent health vector,
update the penalty and reward counters associated to nodes
and possibly eliminate faulty nodes from the active ones.

The phases of the protocol are executed in consecutive rounds,
and phases of multiple instances of the protocol are interleaved
at each execution of diagi (Fig. 1). The pseudo code of the
diagnostic job diagi, running on each node i, is presented in
Alg. 1. For simplicity of presentation the pseudo code assumes
that the round number k is known by the algorithm, although
this is not necessary in the actual implementation if the values of
some variables in the last two rounds are buffered.

Consistent location of faulty senders. Local detection and
aggregation entail reading the interface variables and their validity
bits. As we do not constrain the scheduling of the diagnostic jobs
in a round, we need to consider that diagnostic jobs running on
different nodes at the same round can read different values with
different freshness from the same interface variables.

Consider a diagnostic job diagi which, at round k, reads from
the interface variables the values of the diagnostic messages
dm1, . . . , dmN and their validity bits. As diagnostic messages
are sent at every round, the read values were sent (following the
sending order) either at round k or k−1. Hence there is a locally
known integer li ∈ [1, N], determined by the internal schedule of
diagi within node i, such that values of dm1, . . . , dmli were sent
at round k, while values dmli+1, . . . , dmN were sent at round
k − 1 (see Fig. 2). The same holds for the validity bits of the
messages. In Figure 1, for example, l1 = l2 = 0, l3 = 1 and
l4 = 2. Note that from the system model a diagnostic job diagi

which is executed between the completion of the last sending slot
of round k and the beginning of the first sending slot of round
k +1 is treated as it was executed at round k and li is thus set to
N . Therefore, in a frame-based system with synchronous rounds
we have lj = N for all nodes j.

For all diagnostic jobs executed at round k to consistently

5

m
k-1

[1] m
k-1

[2] m
k-1

[4]

Diagnostic messages (interface variables):

values read in round k-1

values read in round k

k-1 k-1 k-2 k-2

l
i
 = 2

Round of msg update

Update order

Aligned values

at round k

(al_m and al_ls
k
)

m
k-1

[3]

m
k
[1] m

k
[2] m

k
[4]

k k k-1 k-1

m
k
[3]

Fig. 2. Example of read alignment (round k, li = 2)

use aligned diagnostic messages (resp. validity bits) from round
k − 1, the protocol executes a read alignment operation (Fig. 2;
Alg. 1, lines 3–6). Read alignment combines in variables al m[j]

(resp. al lsk[j]) values mk−1[1, . . . , li] (resp. lsk−1[1, . . . , li])
read in the previous round k − 1 and of mk[li+1, . . . , N] (resp.
lsk[li+1, . . . , N]) read in the current one. This requires buffering
of messages and validity bits of the last two or three rounds, and
introduces additional delays in the communication. If all nodes
can read the messages sent in the current round, the constant u

is set to 0 and no buffering is used. The latency of the protocol
is reduced in this case.

For local detection, the validity bits are copied into the vector
lsk (line 2) and combined using read alignment (lines 3–6).
The vector al lsk contains at round k the local syndromes
corresponding to the messages sent at round k − 1.

During the dissemination phase a send alignment is also needed
to ensure that, despite unconstrained node scheduling, all local
syndromes sent at round k refer to a same previous diagnosed
round, as required by the aggregation phase. We define the
predicate send curr roundi to be true if, according to the internal
schedule of node i, the diagnostic messages formed by the diag-
nostic job diagi after being started at round k can be sent at round
k, that is, diagi writes onto its interface variable vi before the
sending slot of i in k. In Fig. 1, for example, send curr round1

does not hold, but it holds for all other nodes. In a frame-
based system with synchronous rounds send curr roundi does
not hold for any node. This is because each computational phase
is followed by a communication phase in the next round.

As rounds start with the beginning of their first sending slot,
send curr roundi does not hold for at least one diagnostic job.
Send alignment is thus used to let all nodes consistently wait one
round before sending the local syndromes computed in a round
(line 7). If a job completes its execution after the sending slot of
its node, it writes its current aligned local syndrome (line 8). This
ensures that all local syndromes sent in a round are computed
in the same round. In frame-based systems with synchronous
rounds send curr roundi does not hold for any node and all
nodes write their current local syndromes for round k. These are
all consistently sent it in the next round.

The aggregation phase first copies into the vector mk the values
of the local syndromes sent by all diagnostic jobs through the
diagnostic messages (line 2). A special error value ε is assigned
to local syndromes whose validity bit is 0. Read alignment is used
to guarantee that all jobs executed at round k form a diagnostic
matrix using local syndromes sent at round k− 1, which refer to
the same diagnosed round (lines 3 – 6); vector al m[j] represents
the jth row of the matrix. The jth element of the local syndrome
sent by node i to node n can assume three possible values: 0,
if i was not able to receive the message from node j in the slot
of interest; 1, if i was able to receive the message from j; ε, if

Algorithm 1: Node i diagnostic job diagi at round k

const u = 0 if ∀j : lj = N ; else u = 1;1

// Phases 1 and 3 - Local detection, Aggregation
// (read alignment)

mk, lsk ← read iface&vbits(dm1, . . . , dmN);2
for j ← 1, . . . , li do3

al m[j] ← mk−u[j]; al lsk[j] ← lsk−u[j];4
for j ← li + 1, . . . , N do5

al m[j] ← mk[j]; al lsk[j] ← lsk[j];6

// Phase 2 - Dissemination
// (send alignment)

if send curr roundi then write iface(al lsk−1);7
else write iface(al lsk);8

// Phase 4 - Analysis
// (consistent location of benign faulty senders)

for j ← 1, . . . , N do9
cons hv[j] ← H-maj〈al m[1][j], . . . , al m[j − 1][j],10
al m[j + 1][j], . . . , al m[N][j]〉;

if ∃l : cons hv[l] = ⊥ then cons hv ← al lsk−u−1;11

// Phase 5 - Update counters (and isolate)
// (decision on node isolation)

active ← p r(cons hv, active);12
return active;13

n was not able to receive the local syndrome from i correctly.
For example, Table I shows the diagnostic matrix formed in case
node 3 and 4 are two (coincident) benign faulty senders in both
the diagnosed round and the dissemination round.

As faults can occur during the dissemination phase of the pro-
tocol, the diagnostic matrices can contain incorrect or incomplete
information, and different nodes can form different diagnostic
matrices due to asymmetric faults. However, a consistent global
view on faults in the diagnosed round can be obtained by
combining different local views using a hybrid voting function
H-maj(V) (Eqn. 1) over the columns V of the matrix. The opinion
of a node about itself is considered unreliable and discarded
to tolerate asymmetric faults. Thus, voting is executed over the
(N − 1)-tuple V of local syndromes representing the opinions
of the other nodes (lines 9 – 11). In order to tolerate benign
faults, a hybrid voting function excludes erroneous votes ε from
V (excl(V, ε)) before calculating the majority [23].

H-maj(V) =





⊥ if |excl(V, ε)| = 0
v if v = maj(excl(V, ε))

and |excl(V, ε)| ≥ 1
1 else

(1)

The consistent health vector cons hv is the outcome of the
hybrid majority voting and contains, at round k, the agreed view
on the health of each node at the diagnosed round d round, where
the value 0 denotes a faulty node. In case no correct vote is
available (|excl(V, ε)| = 0), the voting function cannot reach a

TABLE I
EXAMPLE DIAGNOSTIC MATRIX (3-4 BENIGN FAULTY)

Accused node
Accuser node Local syndr. 1 2 3 4

Node 1 al m[1] - 1 0 0
Node 2 al m[2] 1 - 0 0
Node 3 al m[3] ε ε - ε
Node 4 al m[4] ε ε ε -

Voted cons hv 1 1 0 0

6

decision. From the fault assumption, this implies that a + s = 0

and thus the local syndrome represents a correct and consistent
value for the health vector.

Filtering unhealthy nodes. The consistent health vector is
given as an input (Alg. 1, line 12) to the p/r algorithm (Alg. 2).
The p/r algorithm considers an extended fault model where all
nodes alternate periods of faulty and correct behavior [30]. A
node is healthy if it suffers only sporadic and external transient
faults, and unhealthy if it suffers internal faults which manifest
as intermittent or permanent communication faults. The model
implicitly assumes that internal faults will manifest at the interface
of the node as either permanent sender faults (a long faulty burst),
or intermittent faults with a shorter time to reappearance than
external transient faults.

The p/r algorithm uses the consistent health vector to eliminate
unhealthy nodes from the set of active nodes active, which is a
vector with one entry for each node. Entries of active are initially
set to 1 and are later set to 0 when a node is excluded from the set
of active nodes. Each node keeps a penalty and a reward counter
for each node in the system in the vectors penalties and rewards.
All counters are initially set to 0. Every time a new consistent
health vector is available, penalties and rewards are updated for
each node (Alg. 2, line 2). As the health assessment of the system
stored in vector cons hv is consistently calculated in Alg. 1, the
penalty and reward counters are always consistently updated, and
thus exclusions can be consistently decided in the same round by
all obedient nodes.

When a node j is deemed faulty (Alg. 2, lines 4 – 7), the
corresponding penalty is increased by a value criticalities[j] ≥ 1.
If the penalty value of j exceeds a pre-defined penalty threshold
P > 0, j is eliminated from the set of active nodes. Criticalities
higher than 1 are used to speed-up the exclusion of nodes
hosting safety-critical applications. The entry of a node j in the
vector criticalities is defined based on the highest criticality
class among all the applications hosted by j, as described in
Section VIII and [30].

If a node j is deemed correct, (Alg. 2, lines 4 – 12), its reward
value is increased by one. If the reward value of j exceeds a
pre-defined reward threshold R > 0, both its penalty and reward
value are reset to 0.

The penalty and reward thresholds, and the corresponding
counters, represent two different kinds of information: the reward
threshold indicates the minimum number of consecutive fault-free
slots a node needs to display before the memory of its previous
faults is reset; the penalty threshold bounds the maximum number
of consecutive faulty slots a node is allowed to display before
isolation. After a bounded amount of time either of thresholds is
exceeded, resulting in isolation of the node or reset of the counters
respectively. The penalty (resp. reward) threshold must be tuned to
maximize (resp. minimize) the probability of excluding unhealthy
(resp. healthy) nodes from the set of active nodes. These two
objectives require making a complex tradeoff [30]. In Section VIII
we show how to do this in a practical system.

Exclusion, reintegration and startup. The vector active

contains the status of activity of each node and represents the
output of the protocol (Alg. 1, line 12). Any traffic generated by
isolated nodes is ignored by the diagnostic jobs. Isolated nodes
thus become equivalent to benign faulty nodes. Upon reintegration
of an inactive node, the value of the corresponding element is set
back to the initial value 1 (up) and its traffic is considered again.

Algorithm 2: The p/r algorithm
inputs: (cons hv, active);1
for j ← 1, . . . , N do2

if active[j] = 1 then3
if cons hv[j] = 0 then4

penalties[j] ← penalties[j] + criticalities[j];5
rewards[j] ← 0;6
if penalties[j] ≥ P then active[j] ← 0 ;7

else8
if penalties[j] > 0 then9

rewards[j] ← rewards[j] + 1;10
if rewards[j] ≥ R then11

penalties[j] ← 0; rewards[j] ← 0 ;12
return active;13

A detailed exposition of reintegration techniques are outside
the scope of this paper, so the algorithm only sets activity
bits to 0 (isolated). In order to be reintegrated into the set by
our application-level protocol, a node first has to be correctly
reintegrated into the TT platform at the network level. After this
is done, reintegration must fulfill three tasks. First, the new node
has to know the current set of active nodes. Second, the node
has to acquire the current value of the penalty and reward values
for all the other nodes in the system. Third, the other nodes must
include the reintegrating node into the set. The criticalities and the
penalty and reward thresholds for all nodes are statically assigned
at design time.

On-line reintegration can entail additional bandwidth and com-
putational costs. Other existing protocols for TT systems [21], [3],
[14] let nodes exchange their active sets, or membership views,
at each round. This information is used both for detecting and
excluding faulty nodes and for on-line reintegration. Our transient
fault handling approach decouples the diagnosis of faults from the
decision on node exclusions, and requires that these two types of
information are sent separately. Sending the active sets stored
by the nodes requires additional O(N) bits per message. After
joining the TT network, the reintegrating node first tries to find
out the set of active nodes. In order to tolerate Byzantine nodes
sending incorrect active sets, the reintegrating node must receive
active sets from all nodes and execute hybrid voting.

Reintegrating nodes also need to recover the current penalty and
reward counters for all the active nodes identified in the previous
step. Nodes send counter information of only a single node at
each round to reduce bandwidth consumption. Further reduction
is achieved by sending the penalty and reward value of a node
over three rounds. First the ID of a node is sent, then its current
penalty value, and finally its reward value. Reintegrating nodes
collect this information from all active nodes and executes hybrid
voting to tolerate Byzantine faults.

Penalty and reward values of active nodes are continuously
updated during reintegration. Reintegrating nodes receive diag-
nostic messages, calculate the consistent health vector, and update
the penalty and reward counters they have already recovered.
However, they do not send protocol messages until they have
recovered all the necessary information. Nodes external to the
active set can be reintegrated in the set as soon as they begin to
send protocol messages and are consistently diagnosed as correct
by all other active nodes for the first time. The presence of
nodes which are external to the active set can be tolerated by
the protocol since they are seen as benign faulty by the other
nodes which are already active. The algorithm can easily handle

7

nodes executing startup as its application-level jobs can participate
in the protocol only after their TT communication controller has
completed startup. Nodes whose startup is not yet completed are
simply seen as benign faulty by the other nodes in the active set.
Overall, our protocol can provide fault handling for transient and
Byzantine faults at the costs of higher bandwidth requirements
for on-line reintegration.

Properties of the diagnostic protocol. In this section we prove
the properties of the diagnostic protocol, which are:

- Correctness: a correct sender is never diagnosed as faulty in
the consistent health vector of any obedient nodes;

- Completeness: a benign faulty sender at round k− 2u− 1 is
always diagnosed as faulty in the consistent health vector of
all obedient nodes at round k;

- Consistency: the consistent health vector is agreed by all
obedient nodes in each round.

- Consistent Isolation: the set of active nodes is agreed by all
obedient nodes in each round.

The diagnostic delay for completeness, which is 2u+1 rounds,
depends on the constant u ∈ {0, 1} defined in Alg. 1. If read
alignment is used then u is equal to 1 and this reflects the
additional delay given by buffering messages.

We remark that in our extended fault model these properties
hold for obedient nodes, i.e., both correct nodes and nodes
encountering omission faults. These properties imply that an
obedient node is able to exclude itself from the set of active
nodes and become silent.

We first prove that the diagnostic matrix used for the hybrid
voting consists of validity bits of messages sent in the same round.
Next we study the conditions under which the hybrid voting is
able to calculate a consistent health vector that provides for the
four properties defined above.

Lemma 1: If node i is obedient and diagi reads the vector
mk 6= ε (resp. the vector lsk) at round k then mk[j] with j ∈
{1 . . . li} contains the diagnostic message dmj sent by node j

to i at (resp. contain the validity bits of the messages sent by
all nodes to i at) round k, while mk[j] with j ∈ {li + 1 . . . N}
contains the diagnostic message dmj sent by node j at (resp.
contain the validity bits of the messages sent by all nodes to i at)
round k − u.

Proof: From the definition of li, the values of the interface
variables with index in {1 . . . li} read by diagi at round k (Alg. 1,
line 2) were sent in round k, while the values of the other interface
variables were sent in round k − u. The same holds for the
corresponding validity bits. The existence of li follows from the
system model. Interface variables and validity bits are updated at
every round and are immediately updated when the sending slot
is completed. Also, node IDs, and thus interface variables too,
are given indexes which follow the order of completion of the
sending slots of the nodes. ¤

Lemma 2: If node i is obedient and the vector al m 6= ε (resp.
al lsk) is computed by diagi at round k then al m[j] (resp al lsk)
contains the diagnostic message dmj sent by node j to i at (resp.
the validity bits of the messages sent by all nodes to i at) round
k − u.

Proof: This follows from Lemma 1 and from the fact that read
alignment (Alg. 1, lines 3 – 6) copies into the vector al m 6= ε

(resp. al lsk) the values (resp. the validity bits) of the interface
variables with indexes {1 . . . li} as they are read in round k − u,
and copies the values (resp. the validity bits) of the remaining

interface variables as they are read in round k. ¤
Lemma 3: For all obedient nodes i, if diagi sends at round k

a diagnostic message dmi, this contains the values of al lsk−1.
Proof: The predicate send curr roundj can not be true for

all nodes j since this would imply that at least one job diagi is
executed before the first sending slot of each round k and after
the last sending slot of round k − 1. In this case, by definition,
we consider diagi as executing in round k − 1 and therefore
send curr roundi is false, a contradiction.

If send curr roundj is true only for a proper subset S of the
nodes then for each obedient node j ∈ S, diagj writes into vj at
round k the value al lsk−1, which is sent at round k by definition
of send curr roundj (Alg. 1, line 8). For all other obedient nodes
i 6∈ S, diagi writes into vi at round k−1 the value al lsk−1, which
is sent at round k by definition of send curr roundi (Alg. 1,
line 7). ¤

Lemma 4: If nodes i and j are obedient, the value of
al m[j] 6= ε computed by diagi at round k contains al lsk−u−1

computed by diagj at round k − u− 1.
Proof: From Lemma 3 the diagnostic job diagj sends at

round k − u a diagnostic message dmj containing the value of
al lsk−u−1. From Lemma 2, the value of dmj sent by j at round
k − u is copied in al m[j] by diagi at round k. ¤

Lemma 5: If there exists a node j and a value v such that for
all the obedient nodes i, diagi computes al lsk−u−1[j] = v then
for each obedient node i the value of cons hv[j] calculated by
diagi at round k is v.

Proof: Let us assume by contradiction that there exists an
obedient node i such that diagi computes cons hv[j] = v′ 6= v

at round k. The hybrid majority calculated by diagi at round
k (Alg. 1, line 10) either return ⊥ for some entry value or it
does not. If it does, then v′ = al lsk−u−1[j] 6= v (Alg. 1,
line 11), a contradiction. Let us now consider the case when
the hybrid majority does not return any ⊥ entry in cons hv.
It follows from Lemma 4 and from the hypothesis that for all
obedient nodes l 6= j, the value of al m[l][j] computed by diagi

at round k contains either v or ε. Let b′ ≤ b the number of
obedient nodes which suffer send omissions while sending the
diagnostic messages used by diagi to compute the entries of
V = 〈al dm1[j], . . . , al dmj−1[j], al dmj+1[j], . . . , al dmN [j]〉
at round k (Alg. 1, lines 3 – 6). By definition, there are at
least N − a − s − b′ − 1 correct nodes such that V has as
many entries equal to v and at least b′ entries equal to ε. It
follows from the fault assumption N > 2a + 2s + b + 1 that
a hybrid majority for v exists in this case as the entries from
the correct nodes are a majority among the non-ε entries, that is,
N − a− s− b′ − 1 > (N − b′ − 1)/2. ¤

Theorem 1: The consistent health vector cons hv calculated
by each obedient node at round k guarantees correctness, com-
pleteness and consistency.

Proof: By definition, no obedient node sets its validity bit to
0 for a correct node or to 1 for a benign node. Correctness and
completeness thus follow from Lemmas 2 and 5.

Let us assume by contradiction that consistency is violated
and that two obedient nodes calculate two different cons hv[j]

entries for the same node j. Since H-maj is a deterministic
function, the two nodes must have voted on different vectors V =

〈al m[1][j], . . . , al m[j − 1][j], al m[j + 1], [j], . . . , al m[N][j].
This implies that there exists at least one asymmetric faulty node
l 6= j such that value of al m[l], which is taken from a diagnostic

8

messages dml sent by node l, is received differently by the two
obedient nodes. However, as a ≥ 1 by assumption, the node j

is either correct, or benign, or symmetric Byzantine. In all these
cases all obedient nodes set their validity bit of the message sent
m by j at round k−2u−1 to the same value v by definition. From
Lemma 2, al lsk−u−1[j] is the validity bit for m. From Lemma 5,
v is contained in the cons hv[j] calculated by all obedient nodes,
a contradiction. ¤

Since the p/r algorithm deterministically updates penalties and
rewards according to the consistent health vector, the following
theorem follows as a corollary of Theorem 1.

Theorem 2: The active vector calculated by each job at round
k guarantees consistent isolation. ¤

V. THE TUNABLE MEMBERSHIP PROTOCOL

A common approach to fault tolerance in distributed systems is
to use a group membership service to preserve node consistency
and to trigger recovery actions and reconfigurations. Similar to
the diagnostic protocol, membership outputs a set of active nodes,
called the view in membership protocols, and requires no inputs
from other applications. Our membership protocol differs from
diagnosis as it does not only detect send omissions but also
receive omissions. When an asymmetric fault occurs, nodes may
be partitioned into two sets, termed as cliques, such that only
members of one clique received the message from the faulty node.
The membership protocol is able to detect the formation of cliques
and to consistently diagnose them in the consistent health vector.

Membership protocols support replication of deterministic ap-
plications by identifying at each time the set of nodes, called view,
that have received the same history of messages. This guarantees
that the deterministic jobs hosted by the nodes have a consistent
internal state. Full inter-replica consistency requires, for example,
that nodes suffering from even a single receive omission are
excluded from the view. In fact, retransmitting lost messages in
a timely manner is not always possible and is also complex and
resource-consuming. However, a membership protocol that does
not overreact to transient faults needs to relax its consistency
guarantees. Our membership protocol features a new consistency
property, called tunable view synchrony, which results from the
combination of a clique detection protocol and the p/r algorithm.

Compared to the diagnostic protocol of Section IV, this
membership protocol detects a larger range of omission faults.
Also, different from existing membership protocols which assume
restricted failure models, our protocol keeps a consistent view
among all nodes even in presence of asymmetric Byzantine faults.
A limitation of the approach is that it is impossible to distinguish
between benign receive omissions and Byzantine faults which
creates cliques by not sending messages, or by sending inconsis-
tent local syndromes, only to a subset of the nodes in the current
view. In worst-case scenarios, these faults can thus in principle
impact availability. Our protocol is however practical because it is
designed for closed systems where asymmetric Byzantine faults
at the application level have a random nature and are sporadic.

A version of the membership protocol which also tolerates
partitions is presented in Appendix I.

Location of cliques and relaxed consistency. The pseudo
code of a membership job membi running on node i is shown
in Alg. 3. It is a modification of the diagnostic protocol of
Section IV which introduces minority accusations to detect and

locate minority cliques. In the diagnostic protocol, the analysis
phase produces an agreed consistent health vector which uniquely
identifies the set of messages that did not suffer from send
omissions. In case of receive omissions where only a clique of
nodes can receive a certain message, an obedient node j that is
member of a minority clique can be identified because its local
syndrome disagrees with the consistent health vector on the health
of some other node h. In order to accuse j, the new protocol
executes the analysis and assigns minority accusations before the
formation and dissemination of aligned local syndromes al lsk

(Alg. 3, lines 10 – 11). Members of the minority clique are
then consistently deemed faulty when the analysis of al lsk is
executed. The reason for disseminating and agreeing on minority
accusations rather than using them directly to calculate the new
view is to prevent inconsistency on the view if different versions
of the local syndromes are disseminated by a Byzantine node j.
In this cases only a subset of obedient nodes may assign minority
accusations to j.

The outcome of clique detection and location is a consistent
health vector cons hv which accuses all members of a minority
clique. In order not to exclude a node from a view when transient
omissions occur, it is possible to delay view changes and thus
relax consistency. This is made possible by combining the clique
detection protocol and the p/r algorithm. The resulting mem-
bership view vector memb view identifies the current members
of the view and represents the output of the protocol (line 14).
Different tunings of the p/r algorithms not only result in a different
likelihood of node isolation but also allow to customize the degree
of consistency among nodes. If the penalty threshold P is set to
1, nodes are excluded after every single message omission, and
full consistency is ensured. When P is greater than 1, the new
property of tunable view synchrony ensures that the extent of the
divergence among nodes in the same view is bounded. A node
in the current view is considered to be fully consistent with the
others after it is member of the majority clique for a sufficient
number of rounds, regardless of its previous faults.

The relaxed consistency semantics of tunable view synchrony
is suitable for all applications of our actual aerospace and
automotive setups as detailed in Section VIII. In general, we
believe that many applications for TT systems, especially control
applications, can benefit from tunable view synchrony to improve
node availability in the presence of transient faults.

Properties of tunable membership. In this section we prove
that the views identified by the membership vector memb vect

satisfies two fundamental properties: tunable membership live-
ness, that guarantees the activation of view changes when in-
consistencies arise, and tunable view synchrony, that ensures that
all consistent nodes are included in the view. In order to formally
define these properties some auxiliary definitions are first needed.

A view is a set of nodes which initially includes all nodes in
the system. The membership view vector memb view flags the
members of the current view with a 1 in the corresponding entry.
The aim of the protocol is to include in the view exactly the nodes
that are “sufficiently” consistent with each other.

Send and receive omissions on a message m partition the view
into two subsets, or cliques, of nodes that have (resp. have not)
access to the updated values of some interface variables. These
are called majority and minority cliques based on the consistent
diagnosis of the sender of m resulting from the consistent health
vector. Formally, we say that a node i is diagnosed as correct

9

Algorithm 3: Node i membership job membi at round k

const u = 0 if ∀j : lj = N ; else u = 1;1

// Local detection and Aggregation

mk, lsk ← read iface&vbits(dm1, . . . , dmN);2
for j ← 1, . . . , li do3

al m[j] ← mk−u[j]; al lsk[j] ← lsk−u[j];4
for j ← li + 1, . . . , N do5

al m[j] ← mk[j]; al lsk[j] ← lsk[j];6

// Analysis

for j ← 1, . . . , N do7
cons hv[j] ← H-maj〈al m[1][j], . . . , al m[j − 1][j],8
al m[j + 1][j], . . . , al m[N][j]〉;

if ∃l : cons hv[l] = ⊥ then cons hv ← al lsk−u−1;9

// Minority accusation

for j ← 1, . . . , N do10
if (cons hv 6= al m[j]) then al lsk[j] ← 0;11

// Dissemination

if send curr roundi then write iface(al lsk−1);12
else write iface(al lsk);13

// Update counters (and change view)

memb view ← p r(cons hv, memb view);14
return memb view;15

(resp. faulty) by an obedient node j at round r if membj computes
cons hv[i] = 1 (resp. cons hv[i] = 0) at round r + 2u + 1. We
say that an obedient node i is member of the minority clique at
round r if i is benign faulty at round r, or there is no local error
detection nor minority accusation at round r between i and a node
j which is diagnosed as faulty at round r by some obedient node
l, or there is a local error detection or a minority accusation at
round r between i and a node j which is diagnosed as correct at
round r by some obedient node l.

The consistency property of the protocol refers to a suffix of
the history of messages sent in the last rounds. Given an obedient
node i, we call divergence set of i with recovery latency d after
round k divi(k, d) the set of rounds k′ ≤ k such that i is in a
minority clique in k′ and there exists no d consecutive rounds k′ <

k′′ ≤ k where i is in a majority clique in k′′. The cardinality of the
divergence set of i multiplied by its criticality level criticalities[i]

is called divergence degree with recovery latency d after round
k. Divergence degree is an important concept because it is used
to tune the consistency provided by the membership protocol. In
presence of simple message omissions, nodes with a divergence
degree equal to zero have received exactly the same history of
messages in the last R (or more) rounds.

The membership view vector calculated by the membership
protocol Alg. 3 must satisfy the following properties given a
penalty threshold P > 0 and reward threshold R > u + 1:

- Tunable Membership Liveness: If after any round k−3u−2

the divergence degree with recovery latency R − u − 1 of
any obedient node i in the current view v is greater or equal
to 2P , all obedient nodes agree upon a new unique view
v′ ⊆ v \ {i} at round k;

- Tunable View Synchrony: If a new view v′ is formed after a
view v at round k, it includes all obedient nodes in v whose
divergence degrees with recovery latency R+u+1 in rounds
≤ k − 2u− 1 are smaller than dP/2e.

Tunable membership liveness imposes that a new view is
established after a loss of consistency. The degree of the allowed
inconsistency can be tuned using the parameters of the p/r

algorithm. Tunable view synchrony ensures that after a new view
v′ is established, which might take up to five rounds, all nodes
in the new view v′ have a maximum divergence smaller than P .

Thanks to the similarity between the diagnostic and the mem-
bership protocols, the following proofs of correctness can use
some results of Section IV. As read and send alignment are the
same in Alg. 1 and Alg. 3, Lemmas 1–3 hold in both protocols,
with the exception of the result of Lemma 2 for al lsk which
only holds if al lsk is not modified by minority accusations.
Furthermore, the hybrid majority function is the same in Alg. 1
and 3, so Lemma 5 holds also for membership. The result of
Lemma 2 for al lsk is extended to minority accusations by the
following Lemma.

Lemma 6: If nodes i and j are obedient, the value al lsk[j]

computed by membi at round k is 0 if and only if (i) the validity
bit of the message sent by j to i at round k − u is 0 or (ii) the
diagnostic message dmj sent by j to i at round k−u is different
from cons hv.

Proof: We first prove that only if implication. Assume by
contradiction that al m[j][l] computed by membi at round k is 0

but (i) and (ii) are false.
The value of al lsk[j] can be set to 0 either during read

alignment (Alg 3, lines 2 – 6) or during minority accusations
(Alg 3, lines 10 – 11). In the first case, Lemma 2 holds for
Alg. 3 as we do not consider minority accusations and this implies
that (i) is true, a contradiction. Therefore the value of al lsk[j]

is set to 0 by membi through the minority accusation because
cons hv 6= al m[j] at round k. Since (i) is false the value of
al m[j] computed by membi at round k is not ε and, from
Lemma 2, it contains the diagnostic message dmj sent by j to i

at round k − u. Therefore (ii) is true, a contradiction.
The if implication follows from the fact that obedient nodes

only accuse nodes by reading validity bits and assigning minority
accusations, so cases (i) and (ii) are the only ones where accusa-
tions can be generated. ¤

Lemma 7: All obedient nodes agree on the consistent health
vector calculated at each round k.

Proof: Let us assume by contradiction that consistency
is violated and that two obedient nodes calculate two differ-
ent cons hv[j] entries for the same node j. Since H-maj is
a deterministic function, the two nodes must have voted on
different vectors V = 〈al m[1][j], . . . , al m[j − 1][j], al m[j +

1], [j], . . . , al m[N][j]. This implies that there exists at least one
asymmetric faulty node l 6= j such that value of al m[l], which is
taken from a diagnostic messages dml sent by node l, is received
differently by the two obedient nodes. However, as a ≥ 1 by
assumption, the node j is either correct, or benign, or symmetric
Byzantine. In all these cases all correct nodes set their validity
bit for the message sent by j at round k − 2u − 1 to the same
value by definition, and all obedient nodes receive the same value
of the diagnostic message dmj sent by j at round k − 2u − 1.
From Lemma 6, the same value v is contained in al lsk−u−1[j]

calculated by each obedient node, and thus from Lemma 5 also
in cons hv[j], a contradiction. ¤

Lemma 8: If an obedient node i is benign faulty at round k−
2u − 1, the cons hv calculated by each obedient node at round
k is such that cons hv[i] = 0.

Proof: If i suffer a send omission at round k − 2u − 1 then,
by definition, the validity bit for the message sent by i to all
obedient nodes is set to 0 by all obedient nodes in that round.

10

From Lemma 6, all obedient node set al lsk−u−1[i] = 0 at round
k − u− 1. The result thus follows from Lemma 5. ¤

Lemma 9: If an obedient node i is member of a minority clique
at round k−3u−2, the cons hv calculated by all obedient nodes
at round k − u− 1 or at round k is such that cons hv[i] = 0.

Proof: If node i is benign faulty at round k−3u−2, the result
follows from Lemma 8. Else, we only consider the case where
there is no local error detection nor minority accusation at round
k− 3u− 2 between i and a node j which is diagnosed as correct
at round k − 3u− 2 by some obedient node l. The other case is
in fact symmetric.

From Lemma 7, for all obedient nodes l, diagl calculates
the same cons hv at round k − u − 1. By hypothesis and from
Lemma 6, diagi computes al lsk−2u−2[j] = 0 at round k−2u−2.
From Lemma 3, diagi sends at round k− 2u− 1 a message dmi

such that dmi[j] = 0. For every obedient node l, either there is
a local error detection between i and l at round k − 2u− 1, or l

receives dmj , which is by definition different from cons hv. In
both cases, it follows from Lemmas 6 and 5 that at round k all
obedient node computes cons hv[i] = 0. ¤.

Lemma 10: For each obedient node i, if i is a member of
the majority clique at rounds k − 3u − 2 and k − 2u − 1 then
the consistent health vector calculated by each obedient node at
round k is such that cons hv[i] = 1 .
Proof: Let us assume by contradiction that i is a member of the
majority clique at rounds k−3u−2 and k−2u−1 and the value
of cons hv[i] calculated by obedient nodes at round k is 0. From
Lemma 5, if all obedient nodes set al lsk−u−1[i] = 1 at round
k− u− 1, we would have a contradiction. Therefore at least one
obedient node j has set al lsk−u−1[i] = 0. From Lemma 6 and
from the fact that i is not benign faulty at round k − 2u− 1, the
diagnostic message dmi sent by i to j at round k − 2u − 1 is
different from the cons hv calculated at round k − u − 1. From
Lemma 3, dmi contains the value of al lsk−2u−2 computed by
i at round k− 2u− 2. From Lemma 6, the al lsk−2u−2 vector is
computed based on the messages received at round k−3u−2. The
fact that al lsk−2u−2 is different from the cons hv calculated at
round k−u−1 contradict the fact that i is in a majority clique.¤

The correctness of clique detection and location is the basis for
the activation of necessary view changes when the consistency of
some members of the current view becomes too loose.

Theorem 3: Tunable membership liveness holds.
Proof: It follows from Lemma 7 and Alg. 3, lines 14 – 15

that the same view is provided by the protocol to all obedient
nodes. Let us assume by contradiction that a node i of the current
view has at round k − 3u − 2 a divergence degree |divi(k −
3u − 2, R − u − 1)| · criticalities[i] ≥ 2P and that a view v′

computed at round k by all obedient nodes is such that i ∈ v′.
By definition, in each round r ∈ divi(k − 3u − 2, R − u − 1), i

was in a minority clique. The penalty value of i is incremented
by criticalities[i] at a round k′ if cons hv[i] is set to 0 by all
obedient nodes in that round. From from Lemma 10 and Alg. 3,
line 14, a penalty increment at k′ for i implies that i is in a
minority clique at to at most two rounds k′ − 3u − 2 and k′ −
2u− 1. This implies that i has got at least |divi(k− 3u− 2, R−
u − 1)| · criticalities[i]/2 ≥ P penalties. From Lemma 9, these
increments are given during rounds in [dm +2u+1, dM +3u+2],
where dm and dM are min(divi(k − 3u − 2, R − u − 1)) and
max(divi(k− 3u− 2, R− u− 1)) respectively. The p/r algorithm
excludes nodes which have reached the penalty threshold P from

the view memb view (Alg. 2, line 7). In order not to be excluded
from the p/r algorithm, node i must have reset the penalties at
least once by accruing rewards in at least R consecutive rounds in
[r′, r′+R−1], with r′ > dm+2u+1 and r′+R−1 < dM +3u+2

(Alg. 2, line 12). The reward value of i is increased in a round
if cons hv[i] = 1. From Lemma 9, if cons hv[i] = 1 at rounds
r − u − 1 and r then node i is in a majority clique at round
r − 3u − 2. Since cons hv[i] = 1 for R > u + 1 consecutive
rounds, it thus follows that i is in a minority clique in rounds
[r′−2u−1, r′+R−3u−3], that is, for R−u−1 consecutive rounds.
By definition of divi(k−3u−2, R−u−1), these rounds must either
precede dm or follow dM . In the first case, r′+R−3u−3 < dm,
which contradicts the requirement r′ > dm +2u+1 as R > u+1.
In the second case, r′ − 2u − 1 > dM , which contradicts the
requirement r′ + R− 1 < dM + 3u + 2 as R > u + 1. ¤

Membership liveness could be trivially ensured by a protocol
that always returns empty views. Tunable view synchrony rules
out these solutions and requires that all nodes having a consistent
internal state are included in every new view. Correctness of
clique detection is its necessary precondition.

Theorem 4: Tunable view synchrony holds.
Proof: Let us assume by contradiction that an obedient node

i with a divergence degree |divi(k
′, R+u+1)| ·criticalities[i] <

dP/2e for all k′ ≤ k − 2u − 1 is not included from the new
view at round k. This can only happen if cons hv[i] calculated
at some round r ≤ k is equal to 0. In this case the penalty of
i is incremented and can exceed the penalty threshold P . From
Lemma 10, i was in a minority clique at round r − 3u − 2 or
r− 2u− 1. This implies that divergence degree divi(k

′, R + u +

1) after some round k′ ≤ k − 2u − 1 is not empty. However,
divi(k

′, R+u+1)| ·criticalities[i] < dP/2e by hypothesis. From
Lemma 9, each of the elements in divi(k

′, R+u+1) corresponds
to at most two penalty increments (at round k′ + 3u + 2 or k′ +
2u+1). These result in 2·|divi(k

′, R+u+1)|·criticalities[i] < P

penalties. If i has been excluded from the view and has reached
the penalty threshold P , there must be a round r before or after
those in divi(k

′, R + u + 1) such that cons hv[i] = 0 at round
r. We show that the reward threshold is reached, and the penalty
and reward thresholds are reset, before the penalty is increased
once again at round r.

Let dm = min(divi(k
′, R+u+1)) and dM = max(divi(k

′, R+

u + 1)). We first show that r cannot follow dM . Let rM be the
smallest round > dM where i is in a minority clique. Note that
since rM 6∈ divi(k

′, R + u + 1), rM − dM > R + u + 1 ≥
u + 2 by definition of divergence degree and R > 0. From
Lemma 10 and as i is in the majority clique at round dM + 1

and in the immediately following ones (which are at least u+1),
cons hv[i] = 1 at round dM +3u+3 or before. Therefore, i has its
reward increased in that round and in the immediately following
ones. As i is in a minority clique at round rM , i has its penalty
increased at round rM + 2u + 1 > dM + R + 3u + 2 or later
from Lemma 10. In the meanwhile, node i has collected at least
(dM + R + 3u + 3) − (dM + 3u + 3) = R rewards. A similar
argument is used to show that r cannot precede dm. Let rm be
the largest round < dm where i is in a minority clique. Since
rm 6∈ divi(k

′, R+u+1), dm−rm > R+u+1 ≥ u+2 by definition
of divergence degree. As i is in the majority clique at round rm+1

and in the immediately following rounds (which are at least u+1),
its reward is increased at round rm +3u+3 < dm−R+2u+2 or
before from Lemma 10. As i is in a minority clique at round dm,

11

the penalty of i is again increased at round dm + 2u + 1 or later
from Lemma 9. Also in this case the reward threshold is reached
before the penalty is increased again. ¤

VI. FORMAL VERIFICATION OF THE PROTOCOLS

We formally verified the correctness of the diagnostic and
membership protocols presented in the previous sections by using
model checking [9]. The hand-proofs of Sections IV and V
show that the protocols satisfy their correctness properties. Model
checking is an additional, independent technique to prove these
correctness claims. We gave as input to the model checker the
pseudo-code of our protocols, a description of our fault and
system model, and the correctness properties of the protocol
expressed in temporal logic. The full inputs for the model checker
are in Appendix II. The model checker makes an exhaustive
exploration of the generated state space and searches for a run
(termed as counterexample) violating one of the properties. If no
counterexample is returned, the property is proved true.

Model checkers require a finite representation of the distributed
system whose size is small enough to permit exhaustive ex-
ploration within reasonable time and memory constraints. The
properties of our protocol, however, are proved to hold for systems
that are arbitrarily large in terms of the number of nodes. The size
of the state space of each node can also grow arbitrarily large as
the values of the penalty and reward thresholds P and R are
unbounded. The goal of model checking is to verify the most
relevant range of finite system behaviors. When computationally
feasible, we verified systems with N ≤ 6, P ≤ 3, R ≤ 2 and
criticalities[i] = 1 for every node i. Such choice of parameters
allowed the model checker to explore different combinations of
faulty node behaviors such as multiple Byzantine faults (when
s = 2 or a = s = 1), receive omissions (a > 0), transient faults
(P > 1, R > 1), and partitions (p > 0). The overall system size N

is realistic for many practical applications. We have also reduced
the size of the models by considering frame-based systems where
read and send alignment are not used and where li = N and
send current roundi = false for each node i. Adding read and
send alignment only adds some delays to the protocol, as shown
by Lemmas 1 – 4 and 6.

The model checker. We used the Symbolic Analysis Labora-
tory (SAL) [12] for formal verification because of its powerful
model checkers and expressive input language. In particular, we
used the bounded model checker (BMC) of SAL as it performed
better (in terms of execution time) than the symbolic one. The fact
that BMC is only able to prove invariants was not a limitation, as
the properties of both protocols define finite latencies and liveness
properties that could be formalized as invariants by storing the
requested values over rounds. Although BMC verification is in-
complete in general [13], we proved all the correctness properties
of our protocols.

Properties and verification setting. Table II summarizes the
results of the model checking. The verification times ranged from
a few minutes with N = 4 to a few hours with N = 6. The
experiments were executed on an Intel Xeon 2GHz machine with
4GB memory running a SAL 3.0 installation on Fedora Core 6.
The BMC engine of SAL used the Yices 1.0.3 satisfiability solver.
For the diagnostic protocol, we focused on the properties of
Correctness, Completeness and Consistency. The model checking
verified that the result of Theorem 1 is correct under the consid-
ered parametric constraints. The property of Consistent Isolation

is a corollary of Theorem 1, so we avoided its verification and
set P = 1 to reduce the complexity of verification. For the
membership protocol, the model checker verified the properties
of Tunable Membership Liveness and Tunable View Synchrony
and thus the correctness of Theorems 3 and 4. We had to restrict
the verification of Theorem 3 to N ≤ 5 to prevent the size of the
model from becoming infeasible.

VII. VALIDATION OF THE PROTOCOLS

In this section we present the results of the experimental
validation of the diagnostic and tunable membership protocols.
We used physical fault injection to validate the correctness claims
of Sections IV and V under the most common fault scenarios.
We focused on validating the main correctness properties of the
protocol, namely those regarding the consistent detection of faults,
in the most important fault scenarios. A full-fledged validation
of the protocol in every possible fault scenario is outside the
scope of this work. We emphasize that all parameters used in the
validation (and tuning, see Sec. VIII) arise from actual automotive
and aerospace applications.

The validation setup consisted of a set of four nodes consisting
of a host computer (Infineon Tricore 1796) and a communication
controller (Xilinx Virtex 4 FPGA), which are interconnected
via a redundant TT network with shared bus topology (lay-
ered TTP). Each host computer run a TT operating system.
A diagnostic job run on each node as an add-on application-
level module sending one diagnostic message (of 4 bits) per
round. No constraint was imposed on the internal node scheduling
besides executing diagnostic jobs once every round. The static
node scheduling defined the constant integers l{1,..,N} and the
predicates send curr round{1,..,N} used by the protocol for the
read and the send alignment operations. Interface variables were
automatically updated and the validity bits of a message m could
be read using the API call tt Receiver Status. We also
used an additional disturbance node, which is able to emulate
hardware faults in the communication network. As the protocol
does not discriminate between node and link faults, a wide range
of faults in a node could be emulated by corrupting or dropping
a message it sends. We observed the internal state of the nodes
by using the debugging port of the hosts.

We injected different classes of network-level physical faults
on the bus to simulate faults in a deterministic and reproducible
manner. Application-level faults were reproduced by modifying
the code of one diagnostic job. As we know which faults are
injected, we can experimentally evaluate whether the diagnostic
protocol is able to detect them. Each experiment class was
repeated 100 times. A total of 1500 fault injection experiments
was conducted. The fault injection experiments are summarized
in Table III. The table reports the reproduced fault type, expressed
in terms of the fault model, the level where the fault is injected,
the duration of the injection, the number of instances of the
experiment (in each instance different nodes suffer the fault) and
the correctness claim which has been validated. Note that in the
experiments the values of p/r parameters such as P and R were
chosen to validate the correctness of our implementation prior to
the system-specific tunings illustrated in the next Section VIII.

VIII. PRACTICAL TUNING OF THE P/R ALGORITHM

In the previous sections we have provided evidence for the cor-
rectness of the diagnostic and membership protocols by means of

12

TABLE II
SUMMARY OF THE ANALYSIS OF THE PROTOCOLS AND PROPERTIES WITH THE SAL BMC MODEL CHECKER

Protocol Property Parameters Verified Claim Result
Consistency N ≤ 6, P = 1 Theorem 1 PROVED

Diagnosis Correctness N ≤ 6, P = 1 Theorem 1 PROVED
Completeness N ≤ 6, P = 1 Theorem 1 PROVED

Tunable Membership Liveness N ≤ 5, P = 2, R = 2 Theorem 3 PROVEDMembership
Tunable View Synchrony N ≤ 6, P = 3, R = 2 Theorem 4 PROVED

TABLE III
FAULT INJECTION EXPERIMENTS — TDMA SYSTEM WITH N = 4 NODES, THRESHOLDS P = 10, R = 20 AND CRITICALITIES = 1

Level of DurationFault type Actual fault
injection (rounds)

Instances Validated claim

Bursty electrical spikes, random noise andb = 1
silences during the sending slot of the faulty node

Network 1 4 Diagnosis: Theorem 1

b = 2 Same as the experiments above Network 1 4 Diagnosis: Theorem 1
b = 4 Same as the experiments above Network 2 4 Diagnosis: Theorem 1

Random noise during the sending slotb = 1
of the faulty node each second round

Network 20 1 Diagnosis: Theorems 1 and 2

Random diagnostic message sents = 1
by the faulty node

Application 1 4 Diagnosis: Theorem 1

Receive Bus disconnect between Diagnosis: Theorem 1
omission the faulty node and the other nodes Network 1 1 Membership:
(a = 1) during one sending slot Lemmas 9 and 10

hand proofs (Sections IV and V), formal verification (Section VI)
and experimental validation (Section VII). These deterministic
correctness properties are necessary but not sufficient for the
protocol to correctly discriminate between healthy and unhealthy
nodes. This requires a probabilistic tuning of the penalty and
reward thresholds and of the criticality levels of each node, which
entails doing many tradeoffs [30]. In this section, we describe
how we have tuned our prototype in order to respect realistic
automotive and aerospace requirements. The obtained tuning is
summarized in Table IV.

Characterizing intermittent faults. The first difficulty faced
during the practical tuning of the protocol is how to characterize
unhealthy nodes. The p/r algorithm resets the penalty and reward
counters for a node if it does not fail for R consecutive rounds,
where R is the reward threshold. If a fault appears before R

is reached, it is considered correlated with the previous fault.
Therefore, R should be large enough to correlate intermittent
faults. The time to reappearance of intermittent faults, however,
depends on the specific frequency of fault activation for each node
(i.e., which hardware components of the node are damaged and
how often they are stimulated by the software) and is unknown
in most practical systems.

While setting R, designers must make a probabilistic tradeoff
between the capability of correlating intermittent faults with a
large time to reappearance and the avoidance of incorrect corre-
lation of independent and external transient faults. In Figure 3 we
show such a tradeoff for our automotive and aerospace settings,
where the length of the TDMA round is set to T = 2.5ms.
Our practical choice was to set R = 106 to correlate faults
whose interarrival time is within R × T ∼= 42min, which can
be pragmatically considered a reasonable value. After detecting
a transient fault, the resulting probability of correlating a second
transient fault is less than 1% considering the rates of Fig. 3. It
must be noticed that a healthy node will be isolated only if P

subsequent transient faults are correlated, where P is the penalty
threshold [30]. In all our prototypes the probability of isolation

of a healthy node is thus negligible.
Defining the tolerated outage. To increase availability and

accumulate diagnostic data, the p/r algorithm delays the exclusion
of nodes from the active set. In the period between fault manifes-
tation and system recovery, applications may be prevented from
correctly communicating and may suffer an outage. However, all
applications used in our aerospace and automotive settings can
tolerate bounded periods of continuous outage of a node before
a recovery action is activated to restore the availability of the
service or to reach a safe state. We define this upper bound on
the recovery latency as tolerated transient outage. A node which
alternates tolerably short periods of continuous faulty behavior
with long enough periods of correct behavior can be kept in the
set of active nodes.

Applications with different criticality classes have different
requirements on the maximum tolerated transient outage. Tol-
erated transient outages for different classes of automotive and
aerospace applications are shown in Table IV. The automotive
domain depicts a varied range of criticality classes. Safety critical
functionalities are necessary for the physical control of the
vehicle with strict reactivity constraints, e.g., X-by-wire. Recovery
actions must preserve the availability of the (possibly degraded)

 1e-010

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

10
7

10
6

10
5

10
4

10
3

10
210

 0

 1

 2

 3

 4

 5

 6

 7

P
ro

b
. c

o
rr

e
la

ti
o

n
 o

f
tr

a
n

si
e

n
t

fa
u

lt
s

M
a

x
 i

n
te

ra
rr

iv
a

l
ti

m
e

fo
r

c
o

rr
e

la
te

d
 f

a
u

lt
s

(h
o

u
rs

)

Reward threshold R

Transient rate = 10
-2

Transient rate = 10
-3

Transient rate = 10
-4

Fig. 3. Setting R with rounds of 2.5ms

13

TABLE IV
RESULTS OF THE EXPERIMENTAL TUNING OF THE P/R ALGORITHM FOR DIAGNOSIS

Domain Criticality class Example Tolerated outage Crit. increment inc(ch) P R TDMA
Safety Critical (SC) (c1) X-by-wire 20− 50ms 40

Automotive Safety Relevant (SR) (c2) Stability control 100− 200ms 6 197 106 2.5ms
Non Safety Relevant (NSR) (c3) Door control 500− 1000ms 1

Aerospace Safety Critical (SC) (c4) High Lift, Landing Gear 50ms 1 17 106 2.5ms

service. Safety relevant functionalities support the driver, e.g., the
Electronic Stability Control and the Driver Assistant Systems,
such as the collision warning and avoidance system. They are not
necessary for the control of the car but the driver must know if
they are unavailable. Finally, there are Non Safety relevant func-
tionalities such as comfort and entertainment. In the aerospace
domain, only safety critical functionalities are connected to the
backbone. The High Lift System adds lift during the flight and is
related to the control of flaps. The Landing Gear System controls
the retractable wheels used for landing.

Tuning the tolerated outage. In order to tune the p/r algorithm
according to the required tolerated outages we need first to iden-
tify a penalty threshold P and then to define penalty increments
for each node, which are stored in the vector criticalities. The
tolerated outage is the sum of the detection delay, between fault
manifestation and its first consistent location as reflected in the
consistent health vector, the accumulation delay, when the fault
is continuously recorded by the p/r algorithm before the penalty
threshold is reached, and the recovery delay required to complete
the recovery or reconfiguration actions. In our prototype, the
detection delays of both the diagnostic and the more complex
membership service are low enough to satisfy the requirements
of the highest criticality class considered. Once a faulty node
is isolated, each obedient node can instantaneously apply the
necessary reconfiguration with no recovery delay.

The tuning of the parameters P and criticalities used by the
p/r algorithm can increase the accumulation delay to maximize
availability in presence of transient faults. However, our tuning
must also ensure that whenever the outage of a node reaches the
maximum tolerated outage of its most critical application, the
penalty value for the node reaches the penalty threshold and the
node is excluded. In order to find such tuning for the diagnostic
protocol, we injected continuous faulty bursts into the network so
that all nodes are benign faulty for an amount of time equal to
the tolerated outage of the different criticality classes. After the
burst is finished, we observed the value of the maximum value
reached by the penalty counter of any node if all the entries of
the vector citicalities are set to 1. Each experiment was repeated
100 times. If classes c1, . . . , cn have corresponding maximum
penalty counter p1, . . . , pn, we set P = max(p1, . . . , pn). The
criticality increment for class ch, termed as inc(ch), is set to
inc(ch) = dP/phe and is used to define the entries of the vector
criticalities. If the set of criticality classes of all the applications
hosted by node i is Ci, we set criticalities[i] = maxc∈Ci

inc(c).
The penalty thresholds and criticality levels for the automotive

and aerospace setups are shown in Table IV. We observed in both
setups that even for Safety Critical applications it is possible to
wait for some round before isolating faulty nodes. This enhances
the capability of the system of not overreacting to transient faults.

Diagnosis under adverse external conditions. We have shown
how we tuned the parameters of the p/r algorithm under normal

TABLE V
ABNORMAL TRANSIENT SCENARIOS

Scenario Burst TTReapp. # Inj.
Auto (blinking light) 10ms 500ms 50

40ms 160ms 1
Aero (lightning bolt) 40ms 290ms 1

40ms 500ms 9

TABLE VI
TIME TO INCORRECT ISOLATION

Setting Criticality class Time to isolation
Automotive SC / SR / NSR 0.518 / 4.595 / 24.475s
Aerospace SC 0.205s

external conditions. The next step was to try to evaluate the
capability of the algorithm to guarantee node availability under
adverse external conditions, characterized by an abnormal rate of
transient faults. For this purpose we considered two unfavorable
but common scenarios in the automotive and aerospace settings
where external faults are highly frequent and will likely be
considered as intermittent faults. For the automotive setting we
considered a blinking light causing periodic electrical instabilities
on the bus due to an open relay, while for aerospace we considered
a lighting bolt producing a sequence of instabilities with increas-
ing time to reappearance. Systems are designed and tested to
tolerate such transient behaviors without taking specific recovery
actions, therefore isolations should be avoided. The length of
the faulty bursts, the times to reappearance and the number of
instances of the burst are shown in Table V. We reproduced these
scenarios in 100 experiments and observed if and after how much
time healthy nodes were incorrectly isolated.

In both cases, different transient burst are considered as cor-
related by the p/r algorithm. The results for the automotive and
aerospace setting are shown in Table VI. The functionalities with
lower criticalities can tolerate longer periods of abnormal transient
behavior. The use of a p/r algorithm with varied criticality levels
gives advantages in terms of availability. In fact, if nodes were
immediately isolated after the first fault appearance, a single
abnormal transient period would result in the isolation of all
the nodes in the system and would entail a restart of the whole
system. However, even using our p/r algorithm, the availability
of safety critical functionalities can be harmed by relatively short
disturbances in both experimental settings. From this data we
can conclude that the detection of intermittent faults could be
sacrificed for the sake of availability for those nodes implementing
safety critical functions. For example, isolated nodes could be kept
under observation, collecting rewards if a fault-free behavior is
observed and reintegrating the node if a specific reward threshold
for reintegration is reached [30].

14

IX. PORTABILITY ISSUES FOR VARIED TT PLATFORMS

One of our main design goals was to define a diagnostic/mem-
bership protocol that is a tunable and portable add-on application
level module, rather than a static and built-in system level feature.
Our experience has confirmed that this approach is viable. Our
protocol only uses detection capabilities that are provided by
any TT platform. The concept of validity bit abstracts a number
of platform specific error detection mechanisms, whose outcome
can normally be accessed by applications using the basic APIs
provided by the host operating system (see Sec. VII).

Another important issue was not to require interactions or to
interfere with other applications. For this reason, local detection
of faults is implicitly performed by checking the availability of
updated diagnostic messages at the application level. This infor-
mation is provided by all TT platforms. To ease the integration,
the bandwidth requirement of the protocol is limited. In our
prototype diagnostic messages were as small as N bits.

Finally, we avoided imposing strong constraints on node
scheduling. The read and send alignments ensure that all diag-
nostic jobs use consistent data for any schedule, provided that
the diagnostic jobs are executed at every round. To achieve that,
they require the application to know some parameters that are
directly related to the node scheduling, such as l{1,..,N} and
send curr round{1,..,N} (see Sec. IV). If a static scheduling
policy is used, this information is constant and known at design
time. In case of dynamic scheduling we require the OS to provide
this information to the application at run-time. Note that in case
of dynamic scheduling the constant u must be set to 1 because it
is impossible to evaluate the global condition needed to set it to
0 and thus to reduce latency.

X. CONCLUSIONS

Emerging TT platforms, such as FlexRay, need diagnostic and
membership algorithms that are portable, generic, and resistant
to the widest possible range of faults. In this paper, we have
introduced novel protocols which fulfill these requirements and
which can be added-on as a middleware layer on top of any TT
platform. Our protocols aim at relaxing the fault assumptions of
existing protocols. They can tolerate Byzantine faults and multiple
benign faults, and can improve availability even in presence of
transient faults by using a p/r algorithm. The main costs for this
sophisticated fault handling compared to existing protocols for
TT systems are a slightly higher latency and higher bandwidth
costs for on-line reintegration. The correctness of the protocols
is comprehensively substantiated. We have proved the protocol
correctness by hand and through formal verification. Furthermore,
the protocol has also been experimentally validated under the
most common fault scenarios. Finally, we have discussed common
tradeoffs which arise when handling transient faults. We have
shown how to tune the p/r algorithm under realistic automotive
and aerospace settings, and addressed open issues of character-
ization of intermittent faults, determination of the criticality of
faults and diagnosis under adverse external conditions.

REFERENCES

[1] A. Ademaj et al., “Evaluation of Fault Handling of the Time Triggered
Architecture with Bus and Star Topology,” Proc. DSN, pp. 123-132, 2003.

[2] M. Barborak et al., “The Consensus Problem in Fault Tolerant Comput-
ing,” ACM Surveys, vol. 25, no. 2, pp. 171–220, Jun. 1993.

[3] G. Bauer and M. Paulitsch, “An Investigation of Membership and Clique
Avoidance in TTP/C,” Proc. SRDS, pp. 118–124, 2000.

[4] C. Basile et al., “Group Communication Protocols under Errors,” Proc.
SRDS, pp. 35–44, 2003.

[5] C. Bergenhem and J .Karlsson, ”A Process Group Membership Service
for Active Safety Systems Using TT/ET Communication Scheduling,”
Proc. PRDC, pp. 282–289, 2007.

[6] A. Bondavalli et al., “Discriminating Fault Rate and Persistency to
Improve Fault Treatment,” Proc. FTCS, pp. 354–362, 1997.

[7] A. Bondavalli et al., “Threshold-Based Mechanisms to Discriminate
Transient from Intermittent Faults,” IEEE Trans. on Computers, vol. 49,
no. 3, pp. 230–245, Mar. 2000.

[8] A. Bouajjani, and A. Merceron, “Parametric Verification of a Group
Membership Algorithm,” Theory Pract. Log. Program., vol. 6, no. 3,
pp. 321–353, May 2006.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT
Press, 2000.

[10] C. Constantinescu, “Impact of Deep Submicron Technology on Depend-
ability of VLSI Circuits,” Proc. DSN, pp. 205–209, 2000.

[11] F. Cristian, “Reaching Agreement on Processor-group Membership in
Synchronous Distributed Systems,” Distributed Computing, vol. 4, no. 4,
pp. 175–187, Dec. 1991.

[12] L. de Moura et al., “SAL 2,” Proc. CAV, pp. 496–500, 2004.
[13] L. de Moura et al., “Bounded Model Checking and Induction: From

Refutation to Verification,” Proc. CAV, pp. 14–26, 2003.
[14] P.D. Ezhilchelvan and R. Lemos, “A Robust Group Membership

Algorithm for Distributed Real-Time Systems,” Proc. RTSS, pp. 173-
179, 1990.

[15] FlexRay Communication System, Protocol Specification v. 2.1
http://www.flexray.com/specification request v21.php

[16] B. Hall, K. Driscoll, M. Paulitsch and S. Dajani-Brown, “Ringing out
fault tolerance. A New Ring Network for Superior Low-Cost Depend-
ability,” Proc. DSN, pp. 298–307, 2005.

[17] M.A. Hiltunen, “Membership and System Diagnosis,” Proc. SRDS,
pp. 208-217, 1995.

[18] K. Hoyme and K. Driscoll, “SAFEbus,” IEEE Aerospace and Electronic
Systems Magazine, vol. 8, no. 3, pp. 34-39, Mar. 1993.

[19] H. Kopetz et al., “The Time-Triggered Ethernet (TTE) Design,” Proc.
ISORC, pp. 22–33, 2005.

[20] H. Kopetz And G. Bauer, “The Time-Triggered Architecture,” Proc.
IEEE, vol. 91, n. 1, pp. 112–126, 2003.

[21] H. Kopetz and G. Grunsteidl, “TTP - A Protocol for Fault Tolerant Real
Time Systems,” IEEE Computer, vol. 27, no. 1, pp. 14–23, Jan. 1994.

[22] L. Lamport, R. Shostak and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. on Progr. Lang. and Sys., vol. 4, no. 3, pp. 382–
401, Jul. 1982.

[23] P. Lincoln and J. Rushby, “A Formally Verified Algorithm for Interactive
Consistency under Hybrid Fault Models,” Proc. FTCS, pp. 402–411,
1993.

[24] N. A. Lynch, “Distributed Algorithms,” Morgan Kaufmann Ed., 1996.
[25] M. Malek, “A Comparison Connection Assignment for Diagnosis of

Multiprocessor Systems,” Proc. ASCA, pp. 31–36, 1980.
[26] H. Pfeifer, “Formal Verification of the TTP Group Membership Algo-

rithm,” Proc. FORTE XIII / PSTV XX 2000, pp. 3–18, 2000.
[27] F.P. Preparata et al., “On the Connection Assignment Problem of

Diagnosable Systems,” IEEE Trans. on Electronic Computers, vol. 16,
no. 12, pp. 848-854, Dec. 1967.

[28] J. Rushby, “ Systematic formal verification for fault-tolerant time-
triggered algorithms,” IEEE Trans. on Software Eng., vol. 25, no. 5,
pp. 651–660, Sept. 1999.

[29] S. Katz et al., “Low-Overhed Time-Triggered Group Membership,”
Proc. WDAG, pp. 155–169, 1997.

[30] M. Serafini et al., “Online Diagnosis and Recovery: On the Choice and
Impact of Tuning Parameters,” IEEE Trans. on Dependable and Secure
Computing, vol. 4, no. 4, Oct. 2007.

[31] H. Sivecrona et al., “Protocol Membership Agreement in Distributed
Communication Systems - A Question of Brittleness,” Proc. SAE, pa-
per 0108, 2003.

[32] W. Steiner et al., “The TTA’s Approach to Resilience after Transient
Upsets,” Real-Time Systems, vol. 32, no. 3, pp. 213–233, 2006.

[33] P. Thambidurai and Y. Park, “Interactive consistency with multiple
failure modes,” Proc. SRDS, pp. 93–100, 1988.

[34] C. Walter et al., “Formally Verified On-line Diagnosis,” IEEE Trans.
on Software Eng., vol. 23, no. 11, pp. 684–721, Nov. 1997.

15

APPENDIX I
PARTITIONABLE MEMBERSHIP

Network partitioning represents a typical class of faults that
are difficult to prevent, like for example in automotive systems
that use basic broadcast-based networks with limited channel
redundancy and are installed in a harsh environment. Partitions
can be either temporary, due for example to electro-magnetic
interferences on the network, or permanent, as in case of a
network cut. This results in splitting the system into cliques
of nodes that can only communicate within their clique. The
membership protocol of Section V detects and locates cliques
that are generated by at most one asymmetric fault. During a
partition, each message sent is asymmetric faulty according to
the fault model because it only reaches a subset of the nodes.

The diagnostic and membership protocols require that a unique
view of the active nodes must be agreed upon by all obedient
nodes. This cannot be ensured during partitions because the
members of each clique see the other nodes as faulty and agree
on different “consistent” health vectors. The resulting divergences
on the penalty and reward counters can eventually lead to the
creation of different views if a penalty value associated to a node
exceeds its threshold on only one clique. In order to avoid that,
we designed a partitionable membership protocol which preserves
consistency in presence of partitions.

A fundamental problem with partitions is that it is impossible
for a node i to distinguish the case where multiple other nodes
are benign faulty and i should form a new view from the case
where i is partitioned out and it should isolate itself from the view
because it has inconsistent local counters. As a decision cannot be
postponed indefinitely and we do not want to make assumptions
on the duration of the partitions, our protocol needs to assume
that not more than half of the nodes are benign faulty in order
to take a timely decision. If the assumption is wrong, the system
becomes unavailable but not inconsistent.

Fault Model. The partitionable membership protocol has been
designed to consider one additional failure model for nodes
that are neither benign nor symmetric nor asymmetric faulty.
We say that a view is partitioned when multiple cliques of
otherwise correct nodes exist, called partitions, such that there is
always a local error detection between the correct nodes of two
different cliques and no local error detection within the clique. We
distinguish between a primary and possibly multiple secondary
partitions, such that the first one includes at least a majority of
nodes. Partitioning can begin and, if transient, terminate during
any sending slot. In the rounds where partitioning begins and
ends, some members of a clique may be thus able to correctly
communicate with all members of some other clique(s). Partitions
are different from asymmetric faults because they result in at least
two messages which are only received by the same clique of the
sender. A common example of partition is when the network link
of a node is broken and the node cannot receive any message
from the other nodes. We assume that the number of members of
all secondary partitions is at most p, that the number of nodes in
the system is N > 2a + 2s + 2p + 2b + 1, a ≤ 1.

View agreement and view majority. Partitionable membership
prevents possible divergences in the membership view by carrying
out a view agreement phase before establishing new views. At
each round, after observing that a node has exceeded its penalty
threshold, a new view is computed exactly like memb view in
Alg. 3. However, different from the previous algorithm, this is

Algorithm 4: Node i partitionable membership job
part membi at round k

// Local detection, aggregation, analysis,
// minority accusation and dissemination

same as Alg. 3, lines 2 - ??
// Update counters

local mvk ← p r(cons hv, local mvk);1

// Dissemination and aggregation of local views

if (∀j : send curr roundj) ∨ (¬ send curr roundi) then2
write iface field2(local mvk);3

else write iface field2(local mvk−1);4
mvk ← read iface field2(dm1, . . . , dmN);5
for j ← 1, . . . , li do al mv[j] ← mvk−1[j];6
for j ← li + 1, . . . , N do al mv[j] ← mvk[j];7

// View agreement

for j ← 1, . . . , N do8
res ← maj〈al mv[1][j], . . . , al mv[N][j]〉;9

if ∀l : res[l] 6= ⊥ then cons mv[j] ← res;10
else self-isolate;11
return cons mv;12

called local membership view (local mv) and it is not given as
output but it is broadcasted for view agreement. After dissemina-
tion and aggregation, a consistent membership view (cons mv) is
voted and returned as output. The hybrid majority voting function
of Eqn. 1, cannot prevent the formation of different views because
it only considers votes that have been correctly received by a node,
and ignores omitted messages. This can lead to the creation of
different views as two different local majorities can be formed
in each clique which result in different views. Therefore we use
a simple majority voting function, which calculates the majority
among the elements of a vector V . This ensures that only one
view is created at each round if Byzantine and partitioned-out
nodes represent a minority. A default value is output if no value
reaches a majority.

The pseudo code of the partitionable membership algorithm for
node i is shown in Alg. 4. The only modification with respect to
Alg. 3 is the handling of the view change process. After updating
the counters, the algorithm does not immediately change the view
but it builds a new local membership view local mvk, which will
then be proposed during view agreement. Compared to the prior
algorithms, the diagnostic message contains one additional field
of N bits which contains the local view (Alg. 4, line 1). Similar
to local syndromes, local membership views are disseminated and
aggregated using send and read alignment (Alg. 4, lines 2 - 7).

View agreement is then performed on the aligned local mem-
bership views to obtain the consistent membership view (Alg. 4,
lines 8 - 11). If no value can get a majority, nodes must be parti-
tioned out. In this case nodes do not create a new view but rather
isolate themselves. The special operation self-isolate suspends the
execution of the protocol and signals to the applications that the
node has been excluded from the view.

Properties of partitionable membership. The properties of
partitionable membership can be proved in a manner similar
to the membership protocol, so we omit similar details in the
proofs. Majority and minority cliques are now established by
the members of the primary partition, and the local membership
view is agreed using the same operations as Alg. 3. The local
membership view has thus the same properties as in Alg. 3, but
only for the nodes in the primary partition.

16

Lemma 11: Tunable membership liveness and Tunable view
synchrony hold for the local membership views calculated by all
obedient nodes of the primary partition.

Proof: We prove that nodes in the primary partitions can not
distinguish a run where a partition takes place from a run where
certain tolerated fault scenarios arise. The result thus follows from
Theorems 3 and 4, as Alg. 3 and 4 calculate the local membership
view exactly in the same way.

From the viewpoint of nodes in the primary partitions, runs
with partitions differ from runs without partitions by two facts: (i)
during the partition, all otherwise correct nodes in the secondary
partitions appear as benign faulty, and (ii) after the partition,
some otherwise correct nodes in the secondary partitions appear
as symmetric faulty. Case (ii) is given by the fact that nodes in the
secondary partition can have a state which appears as incorrect
to the nodes in the primary partition, and thus send messages
which are apparently arbitrary. To give an example, nodes in
the secondary partition may accuse correct nodes in the primary
partition just because they have been partitioned out.

From the fault model, there are at most p obedient nodes in
the secondary partitions. Let pb (resp. ps) be the number of
obedient nodes in the secondary partition which only appear
as benign faulty (resp. symmetric faulty) to the nodes in the
primary partition. By definition, p ≥ pb + ps. Furthermore, let
b′ = b + pb (resp. s′ = s + ps) be the number of nodes which
appear as benign (resp. symmetric) faulty to the nodes in the
primary partition. The fault assumption of Theorems 3 and 4
require that N > 2a + 2s′ + b′ + 1 and a ≤ 1. This holds
under the fault assumption of partitionable membership, that is,
N > 2a+2s+2p+2b+1 and a ≤ 1. Therefore, the two theorems
hold for the nodes in the primary partition. ¤

Lemma 12: If nodes i and j are obedient, the value of
al mv[j] 6= ε computed by part membi at round k contains
local mvk−u−1 computed by part membj at round k − u− 1.

Proof: In Alg. 4, diagnostic messages not only contain the
local syndromes but also the local membership views. As read and
send alignment in Alg. 4 is executed exactly like in the previous
protocols, Lemma 4 holds not only for al ls but also for the local
membership views local mv. This implies that node i executes
the majority voting of Alg. 4, line 9 at round k over vectors
al mv which contain the local membership views local mvk−u−1

computed by part membj at round k − u− 1. ¤
Theorem 5: Tunable membership liveness and tunable view

synchrony hold with an additional delay of u + 1 rounds.
Proof: From Lemma 11, all obedient nodes of the primary

partition agree on the local membership view at each round. We
prove that at each round k each obedient node either executes
self-isolate or computes as consistent membership view the local
membership view local mvk−u−1 = v computed by the nodes of
the primary partition at round k−u−1. Let us assume that some
node i exists which returns a consistent membership view v′ such
that v′[l] 6= v[l] at round k for some l (Alg. 4, line 12). This
implies that the vector 〈al mv[1][l], . . . , al mv[N][l]〉 contains
more than N/2 elements equal to v′[l] (Alg. 4, lines 8 and 11).
It follows from the fault assumption that there exists at least one
correct node j in the primary partition which has sent a diagnostic
message dmj to i such that dmj = al mv[j] = v′[j] 6= v[j] is
computed by part membi at round k. In fact, the number of nodes
which are faulty or which are members of secondary partitions,
a + s + p + b, is smaller than N/2. From Lemma 12, the value

al mv[j] computed by part membi at round k is local mvk−u−1

computed by part membj at round k − u − 1. By definition,
al mv[j] = v[j], a contradiction. ¤

APPENDIX II
SAL MODELS OF THE DIAGNOSIS AND MEMBERSHIP

PROTOCOLS

We first explain the SAL model of the diagnosis protocol which
is depicted in Table IX. This model will be the base for the models
of the tunable and partitionable membership protocols. Every SAL
model was created in full accordance with the pseudo code of
the protocol. Additional variables are required, as we will see,
to model the environment such as faults or divergence degrees.
A short summary of the state variables in the SAL models are
shown in Table VII.

Every SAL model is divided into three main parts which are
the type and constant declaration part, the module definition part,
and the property definition part. These parts can be found in Table
IX between lines 2–4, 5–57, and 59–61 respectively. For the sake
of clarity, the types and constant declarations for all SAL models
are separately listed in Table VIII. The SAL model of diagnosis is
parameterized in the number of nodes N (at line 1 in Table IX).
SAL modules define state variables and so called transitions to
update these variables. Each of our SAL models contains a single
module called system (line 5) which replicates the variables
used in the protocols’ pseudo code for each node in the system.
This is done by defining an array which is indexed by the ID of
the node. For example, cons hv[1] stores the consistent health
vector at node 1. One round of the system is modeled through
an auxiliary state variable called pc (defined at line 11) which
ranges from 0 to 3 such that the system’s state at the end of
the round is reflected by the state variables when pc is 0. The
ascending values of pc correspond to variable updates that are
dependent of each other. Now we first explain how the protocol’s
operations are modeled at every round, then the properties of the
protocol are specified.

Diagnosis: Protocol Operations. The state variables are first
declared (lines 7–14) and initialized (lines 15–22). The sequence
of the SAL transitions that model the execution of the protocol
is fully deterministic. These are defined by guarded transitions
when pc is 0, 1, 2 and 3 at the lines between 25–31, 33–39,
41–47 and 49–59 respectively. Each of these guarded transitions
increments the value of pc modulo 4. The convention of updating
variables in SAL is that a primed (respectively unprimed) version
of the same variable denotes the new (old) value of it. In SAL,
multiple updates defined within the same transition are executed
in parallel, i.e., the sequence of their definition in the code is
insignificant.

At the beginning of the round, when pc=0, the faults of the
current round are generated (lines 26–29) which are stored in the
variable fvec. For example, fvec[1]=byz says the node 1 is
Byzantine in the current round. We use SAL’s non-deterministic
assignment for assigning a value to fvec. The syntax var’ IN
{v:type|condition} means that the model checker explores
multiple runs such that each different value from the domain
type where the Boolean condition holds is assigned to var.
In this case, the Boolean condition is determined by the fault
model. The pre-defined function constant fcounter is used to
count the number of faults of each severity class. This function
takes the previous and current values of fvec as inputs to make

17

TABLE VII
DESCRIPTION OF THE MAIN STATE VARIABLES IN THE SAL MODELS OF THREE PROTOCOLS

Variable Description
fvec[i] fault status of node i in the current round
ls[i][j] local error detection between node j and i in the current round
al m[i][j] diagnostic message received by node i from node j in the current round
cons hv[i][j] consistent health vector for node j computed by node i in the current round
penalties[i][j] penalty counter for node j stored by node i
rewards[i][j] reward counter for node j stored by node i
dd prev[i] divergence degree of node i with recovery latency R + 1 in the previous round
dd2 prev[i] divergence degree of node i with recovery latency R− 1 in the previous round
R dd prev[i] number of the last consecutive rounds < current round where node i was in the majority clique
al mv[i][j] local membership view received by node i from node j in the current round
cons mv[i][j] consistent membership for node j computed by i in the current round

TABLE VIII
TYPE AND CONSTANT DECLARATIONS IN THE SAL MODELS OF THE THREE PROTOCOLS

nodes : TYPE = [1 . . N] ;
fdomain : TYPE = {symm , c o r r , ben , byz } ;
va ldomain : TYPE = [0 . . 2] ;
vecdomain : TYPE = ARRAY nodes OF va ldomain ;
pcdomain : TYPE = [0 . . 3] ;
i n t : TYPE = [0 . . N] ;
matdomain : TYPE = ARRAY nodes OF vecdomain ;

f c o u n t e r (v : ARRAY nodes OF fdomain , vp rev : ARRAY nodes OF fdomain , f : fdomain , i d x : i n t , c n t : i n t) : i n t = LET a g g r f v e c :
ARRAY nodes OF fdomain = [[n : nodes]

IF v [n]= byz OR vprev [n]= byz THEN byz
ELSE IF v [n]=symm OR vprev [n]=symm THEN symm
ELSE IF v [n]= ben OR vprev [n]= ben THEN ben
ELSE c o r r ENDIF ENDIF ENDIF]

IN IF i d x = 0 THEN c n t ELSE
IF a g g r f v e c [i d x]= f THEN f c o u n t e r (v , vprev , f , idx−1, c n t +1) ELSE f c o u n t e r (v , vprev , f , idx−1, c n t) ENDIF ENDIF ;

p c o u n t e r (v : ARRAY nodes OF fdomain , vp rev : ARRAY nodes OF fdomain , vprev2 : ARRAY nodes OF fdomain , vprev3 : ARRAY nodes
OF fdomain , k : [0 . . N] , kp rev : [0 . . N] , kprev2 : [0 . . N] , kprev3 : [0 . . N] , i d x : i n t , c n t : i n t) : i n t =

IF i d x = 0 THEN c n t ELSE
IF v [i d x]= c o r r AND vprev [i d x]= c o r r AND vprev2 [i d x]= c o r r AND vprev3 [i d x]= c o r r AND

(k= i d x OR kprev = i d x OR kprev2 = i d x OR kprev3 = i d x)
THEN p c o u n t e r (v , vprev , vprev2 , vprev3 , k , kprev , kprev2 , kprev3 , idx−1, c n t +1)
ELSE p c o u n t e r (v , vprev , vprev2 , vprev3 , k , kprev , kprev2 , kprev3 , idx−1, c n t) ENDIF ENDIF ;

h ma j aux (sv : vecdomain , i : nodes , i d x : INTEGER , sum0 : INTEGER , sum1 : INTEGER) : va ldomain =
IF i d x = 0 THEN IF sum0 > sum1 THEN 0 ELSE (IF sum1 > sum0 THEN 1 ELSE

(IF sum1=0 AND sum0=0 THEN 2 ELSE 1 ENDIF) ENDIF) ENDIF
ELSE h maj aux (sv , i , idx−1, sum0 + IF (sv [i d x]=0 AND i d x /= i) THEN 1 ELSE 0 ENDIF ,

sum1 + IF (sv [i d x]=1 AND i d x /= i) THEN 1 ELSE 0 ENDIF) ENDIF ;

h maj (sm : ARRAY nodes OF vecdomain) : vecdomain = [[i : nodes] h ma j aux ([[n : nodes] sm [n] [i]] , i , N, 0 , 0)] ;

maj aux (sv : vecdomain , i d x : INTEGER , sum0 : INTEGER , sum1 : INTEGER) : va ldomain =
IF i d x = 0 THEN IF sum0 > N DIV 2 THEN 0 ELSE (IF sum1 > N DIV 2 THEN 1 ELSE 2 ENDIF) ENDIF
ELSE maj aux (sv , idx−1, sum0 + IF sv [i d x]=0 THEN 1 ELSE 0 ENDIF ,

sum1 + IF sv [i d x]=1 THEN 1 ELSE 0 ENDIF) ENDIF ;

maj (sm : ARRAY nodes OF vecdomain) : vecdomain = [[i : nodes] maj aux ([[n : nodes] sm [n] [i]] , N, 0 , 0)] ;

i s p r i m p a r t (n : nodes , k : nodes , k p r e v : nodes , k p r e v 2 : nodes , k p r e v 3 : nodes) :BOOLEAN =
IF n /= k AND n /= k p r e v AND n /= k p r e v 2 AND n /= k p r e v 3 THEN t r u e ELSE f a l s e ENDIF ;

sure that the fault model holds over one instance of the diagnosis
protocol, which lasts two rounds. The previous value of fvec is
stored (line 30) and used in the specification of the properties.

When p=1, the local syndromes are computed. The Boolean
condition of the non-deterministic assignment constrains that
correct and symmetric Byzantine faulty senders cannot be locally
detected by the receiver node (line 35), a benign faulty sender
is always detected (line 36), and that the local syndrome of
obedient nodes always assume boolean values (line 37). The local
syndromes of the current round are stored (line 38) in order to

model the content of the diagnostic messages received in the next
round.

As a next step (p=2), the diagnostic matrix al m can be
computed (line 42). This transition is based on the values of the
local syndromes which were computed in the previous round and
sent as diagnostic messages. The Boolean condition of the non-
deterministic assignment defines that an obedient receiver always
correctly receives the local syndromes of a correct sender (line
43), the receiver delivers a vector of ε values (denoted with 2) if
the sender is locally detected as faulty (line 44), receive omissions

18

TABLE IX
SAL CODE OF THE DIAGNOSIS PROTOCOL

1 d i a g n o s i s { ;N: n a t u r a l } : CONTEXT = BEGIN
2
3 %t y p e s and c o n s t a n t d e c l a r a t i o n comes h e r e
4
5 sys tem : MODULE =
6 BEGIN
7 LOCAL
8 l s : ARRAY nodes OF vecdomain ,
9 a l m : ARRAY nodes OF matdomain ,

10 c o n s hv :ARRAY nodes OF vecdomain ,
11 pc : pcdomain ,
12 f v e c : ARRAY nodes OF fdomain ,
13 f v e c p r e v : ARRAY nodes OF fdomain ,
14 l s p r e v : ARRAY nodes OF vecdomain
15 INITIALIZATION
16 l s = [[n : nodes] [[m: nodes] 1]] ;
17 l s p r e v = [[n : nodes] [[m: nodes] 1]] ;
18 al m = [[n : nodes] [[m: nodes] [[l : nodes] 1]]] ;
19 c o n s hv = [[n : nodes] [[m: nodes] 1]] ;
20 pc = 0 ;
21 f v e c = [[n : nodes] c o r r] ;
22 f v e c p r e v = [[n : nodes] c o r r] ;
23 TRANSITION
24 [
25 pc =0 −−>
26 fvec ’ IN {v :ARRAY nodes OF fdomain |
27 f c o u n t e r (v , fvec , byz , N,0) <=1 AND
28 (f c o u n t e r (v , fvec , symm , N, 0) + f c o u n t e r (v , fvec , byz , N, 0) > 0
29 => N > 2∗ f c o u n t e r (v , fvec , symm , N, 0) + 2∗ f c o u n t e r (v , fvec , byz , N, 0) + f c o u n t e r (v , fvec , ben , N, 0) + 1)} ;
30 f v e c p r e v ’= f v e c ;
31 pc ’ = 1 ;
32 []
33 pc =1 −−>
34 l s ’ IN {v :ARRAY nodes OF vecdomain |FORALL(m, n : nodes) :
35 (f v e c [n]= c o r r OR f v e c [n]=symm => v [m] [n] = 1) AND
36 (f v e c [n]= ben => v [m] [n] = 0) AND
37 v [m] [n] / = 2} ;
38 l s p r e v ’= l s ;
39 pc ’ = 2 ;
40 []
41 pc =2 −−>
42 al m ’ IN {v :ARRAY nodes OF matdomain |FORALL(m, n : nodes) :
43 (f v e c [n]= c o r r => v [m] [n]= l s p r e v [n]) AND
44 (l s [m] [n]=0 <=> v [m] [n] = [[l : nodes] 2]) AND
45 ((EXISTS (l : nodes) : v [m] [n] [l]=2)=>v [m] [n] = [[l : nodes] 2]) AND
46 (f v e c [n]=symm => FORALL(l , k : nodes) : v [m] [n] [l]= v [k] [n] [l]) } ;
47 pc ’ = 3 ;
48 []
49 pc =3 −−>
50 cons hv ’ = [[n : nodes]
51 IF EXISTS (j : nodes) : h maj (a l m [n]) [j]=2 THEN l s p r e v [n]
52 ELSE h maj (a l m [n]) ENDIF] ;
53 pc ’ = 0 ;
54 []
55 ELSE −−>
56]
57 END;
58
59 c o n s i s t e n c y : THEOREM sys tem |− G(FORALL(l ,m, n : nodes) : pc =0 => c o n s hv [l] [m]= c o n s h v [n] [m]) ;
60 c o m p l e t e n e s s : THEOREM sys tem |− G(FORALL(n : nodes) : f v e c p r e v [n]= ben AND pc =0 => FORALL(m: nodes) : c o n s hv [m] [n] = 0) ;
61 c o r r e c t n e s s : THEOREM sys tem |− G(FORALL(n : nodes) : f v e c p r e v [n]= c o r r AND pc =0 => FORALL(m: nodes) : c o n s hv [m] [n] = 1) ;
62 END

always invalidate the whole diagnostic message so that all entries
assume the value ε (line 45), and symmetric Byzantine nodes
send the same syndrome to every node in the system (line 46).

The last step of the round (p=3) is the computation of the
consistent health vector (line 50), which is deterministic, and uses
the outcome of the hybrid majority unless the voting function
cannot reach a decision and outputs ⊥ (lines 51–52). In the latter
case, which is modeled via the voting function returning 2, the
local syndrome of the previous round is used. After that, pc is
reset to 0 and the modeling of the new round follows similarly.

Diagnosis: Protocol Properties. The properties of the
diagnosis protocol are specified as invariants. The syntax
G(condition) specifies that condition which is a Boolean
formula over the values of the state variables is an invariant, i.e.,
it holds in each reachable state of the system. The properties
are specified such that they must only hold at the end of each
round, i.e., when pc=0. The property consistency specifies
that the consistent health vector entry for node m is the same
for every pair of nodes l and n (line 59). The reason why we
do not distinguish between obedient and non-obedient nodes is

19

that a faulty node is modeled via the messages it sends but its
internal state is modeled as it was an obedient one. Therefore, the
properties must hold for them as well. Completeness is specified
via the predicate completeness, which specifies that if a node
n is benign faulty in the previous round it must be diagnosed
as faulty in the consistent health vector of all obedient nodes m

(line 60). Correctness follows from the predicate correctness,
which states that a correct node n will not be diagnosed at the
next round as faulty by any other obedient node m, by simple
induction over subsequent protocol instances.

Tunable Membership: Protocol Operations. The SAL model
of the tunable membership protocol is shown in Tables X and XI.
In addition to N , this model has the penalty and reward thresholds
P and R as parameters (line 1). The transitions guarded by pc=0,
pc=1, pc=2 and pc=3 are almost identical with those of the
diagnosis protocol. The only difference is that fcounter now
takes as inputs the fault vectors of the current and the last two
rounds because one execution of tunable membership lasts three
rounds.1 Furthermore, the boolean variables obedient store for
each node if it has never been Byzantine or symmetric Byzantine
(line 44).

In this model a new transition is added (lines 61–103) which
models minority accusation to a node n (lines 62–63), the update
of counters (lines 65–74) and divergence degrees (lines 76–101).
A node is active (respectively inactive) if penalties < P

(penalties=P).
In order to express the properties of tunable membership live-

ness and tunable view synchrony in a more compact manner, the
model maintains two variables dd prev (line 84) and dd2 prev
(line 76) which are the divergence degrees of each node at the
previous round with recovery latency R+1 and R−1 respectively.
These are needed for the synchrony and liveness properties of
tunable membership. As the domain of each state variable needs
to be finite in model checking, we defined the ranges of dd prev
and dd prev2 large enough such that the properties of the
protocol could be specified. The divergence degrees are only
incremented if their values stay within the domain (lines 85 and
77). This is a trivial abstraction which preserves all properties of
the protocol as the behavior of the protocol is not specified for the
values of the divergence degrees that are not explicitly modeled.
A new variable is needed to count the number of consecutive
rounds where a node is in a majority clique (R dd prev, line
91). As the model in Table XI assumes that R = 2, dd2 prev
is reset if a node is in the majority clique of a round (line 80).

Since the BMC model checker does not support the definition
of temporal properties, the model has to remember for synchrony
that a node’s divergence degree has never reached dP/2e. This is
done by dd synchr prev[i] (line 95) which is true at round
k if and only if dd prev[i] had not reached dP/2e at round
(k−1) or before. As the new value of dd prev is only available
in the next step when pc=0, we check that dP/2e was not reached
at round (k− 1) by using the conditions of being in the majority
clique (lines 98–99). Such a modeling was needed to minimize
the number of transitions in our SAL models because this can
significantly affect the complexity of BMC model checking.

Tunable Membership: Protocol Properties. The properties
of tunable membership are specified as synchrony (line 110)
and liveness (line 111). The first property mandates that an

1Table VIII only contains the definition of fcounter and pc for the
diagnosis protocol.

obedient node n with a low divergence degree should never be
isolated by an obedient node m, that is, its penalty must always
be smaller than P . The second property mandates isolations if the
divergence degree of n is too large. We require these properties
to hold only if the node is marked as obedient. The divergence
degree for Byzantine nodes is not defined as their local syndrome
is unconstrained.

Partitionable Membership: Protocol Operations. The SAL
model of partitionable membership is shown in Tables XII and
XIII. For the feasibility of model checking, the models assume
that N ≤ 4. For all other parameters we use the same values
as for the tunable membership protocol. The first transition is
now a parameterized by k curr and ps (line 37). This macro
means that SAL generates one instance of the transition for every
pair of possible values of these two parameters. Each of these
transitions selects for each round at most one partitioned node
with ID k curr and the number of the first slot ps when the
system is partitioned. The system is not partitioned in the current
round if the first parameter is 0. Note that the assumption N ≤ 4

implies that at most one node is partitioned out during each
execution of the protocol. The assignment of fvec (line 39)
is adjusted to the fault model of partitionable membership. The
function pcounter (see Table VIII) is used to count the number
of partitioned correct nodes during one protocol execution (line
42). Nodes that self-isolate will act as benign faults in the future
(line 43).

The local syndromes are now computed such that partitions
are also considered (line 55). The assignment of ls is the same
as for tunable membership if either there is no partition (line
56), the sender and the receiver are in the primary partition (line
57), the sender is the receiver (line 58) or the partition has not
started yet (line 59). Otherwise, the sender and the receiver are in
different partitions and the receiver locally detects the sender as
faulty (line 62). The assignment of the diagnostic matrix defines
that a partitioned node, even if otherwise correct, cannot send its
local syndrome to a receiver in another partition (line 72). A new
variable al mv has been added to store the local membership
views that are collected in the last round of the protocol to
reach agreement about the set of active nodes. The assignment
of this variable (line 75) only differs from al m in that the local
membership view instead of the local syndrome is sent by each
node (line 77). Simple majority voting is used to compute the
global membership view. This is done by the next transition and
the result is stored in cons mv (line 85). The definition of the
majority voting function can be found in Table VIII.

The penalty and reward counters and the divergence degrees
are updated similar to tunable membership. The only difference
is the minority and majority cliques are established based on
the primary partition. This means that the local syndrome of a
node will be compared with that of an active node in the primary
partition (see lines 103,111,117 and 125). A simple macro called
is prim part defines a node as part of the primary partition
if it was never part of the secondary partition during the last
execution of the protocol. The array inactive keeps track of
the nodes that executed self-isolation when they registered that
no agreement over the global membership view can be reached
(line 130).

Partitionable Membership: Protocol Properties. The syn-
chrony and liveness properties of the partitionable membership
protocol are specified as psynchrony and pliveness (lines

20

TABLE X
SAL CODE OF THE TUNABLE MEMBERSHIP PROTOCOL (PART 1)

1 membership { ;N: n a t u r a l , P : n a t u r a l , R : n a t u r a l } : CONTEXT = BEGIN
2
3 %t y p e s and c o n s t a n t d e c l a r a t i o n comes h e r e
4
5 sys tem : MODULE =
6 BEGIN
7 LOCAL
8 %only v a r i a b l e s new t o t u n a b l e membership a r e l i s t e d h e r e
9 o b e d i e n t : ARRAY nodes OF BOOLEAN,

10 p e n a l t i e s : ARRAY nodes OF ARRAY nodes OF [0 . . P] ,
11 r e w a r d s : ARRAY nodes OF ARRAY nodes OF [0 . . R−1] ,
12 d d p r e v : ARRAY nodes OF [0 . . P] ,
13 d d 2 p r e v : ARRAY nodes OF [0 . . 2∗ P] ,
14 d d 2 p r e v 2 : ARRAY nodes OF [0 . . 2∗ P] ,
15 R dd prev : ARRAY nodes OF [0 . . R] ,
16 d d s y n c h r p r e v : ARRAY nodes OF BOOLEAN
17 INITIALIZATION
18 %on ly v a r i a b l e s new t o t u n a b l e membership a r e l i s t e d h e r e
19 o b e d i e n t = [[n : nodes] t r u e] ;
20 p e n a l t i e s = [[n : nodes] [[m: nodes] 0]] ;
21 r e w a r d s = [[n : nodes] [[m: nodes] 0]] ;
22 d d p r e v = [[n : nodes] 0] ;
23 d d 2 p r e v = [[n : nodes] 0] ;
24 d d 2 p r e v 2 = [[n : nodes] 0] ;
25 R dd prev = [[n : nodes] 0] ;
26 d d s y n c h r p r e v = [[n : nodes] t r u e]
27 TRANSITION
28 [
29 pc =0 −−>
30 fvec ’ IN {v :ARRAY nodes OF fdomain |
31 f c o u n t e r (v , fvec , f v e c p r e v , byz , N,0)<=1 AND
32 (f c o u n t e r (v , fvec , f v e c p r e v , symm , N, 0) + f c o u n t e r (v , fvec , f v e c p r e v , byz , N, 0) > 0
33 => N > 2∗ f c o u n t e r (v , fvec , f v e c p r e v , symm , N, 0) + 2∗ f c o u n t e r (v , fvec , f v e c p r e v , byz , N, 0) +
34 f c o u n t e r (v , fvec , f v e c p r e v , ben , N, 0) + 1)} ;
35 f v e c p r e v ’= f v e c ;
36 pc ’ = 1 ;
37 []
38 pc =1 −−>
39 l s ’ IN {v :ARRAY nodes OF vecdomain |FORALL(m, n : nodes) :
40 (f v e c [n]= c o r r OR f v e c [n]=symm => v [m] [n] = 1) AND
41 (f v e c [n]= ben => v [m] [n] = 0) AND
42 v [m] [n] / = 2} ;
43 l s p r e v ’= l s ;
44 o b e d i e n t ’ = [[n : nodes] IF f v e c [n]= byz OR f v e c [n]=symm THEN f a l s e ELSE o b e d i e n t [n] ENDIF] ;
45 pc ’ = 2 ;
46 []
47 pc =2 −−>
48 al m ’ IN {v :ARRAY nodes OF matdomain |FORALL(m, n : nodes) :
49 (f v e c [n]= c o r r => v [m] [n]= l s p r e v [n]) AND
50 (l s [m] [n]=0 <=> v [m] [n] = [[l : nodes] 2]) AND
51 ((EXISTS (l : nodes) : v [m] [n] [l]=2)=>v [m] [n] = [[l : nodes] 2]) AND
52 (f v e c [n]=symm => FORALL(l , k : nodes) : v [m] [n] [l]= v [k] [n] [l]) } ;
53 pc ’ = 3 ;
54 []

136 and 138). The delays of this protocol in the frame-based
case are increased by one round with respect to the tunable
membership protocol. Therefore, we use the divergence degrees
from one round earlier. In addition, synchrony and liveness must
hold for active nodes only. SAL’s BMC model checker has proven
both properties for the chosen parameters within a time of up to
a few hours.

21

TABLE XI
SAL CODE OF THE TUNABLE MEMBERSHIP PROTOCOL (PART 2)

55 pc =3 −−>
56 cons hv ’ = [[n : nodes]
57 IF EXISTS (j : nodes) : h maj (a l m [n]) [j]=2 THEN l s p r e v [n]
58 ELSE h maj (a l m [n]) ENDIF] ;
59 pc ’ = 4 ;
60 []
61 pc =4 −−>
62 l s ’ = [[m: nodes] [[n : nodes]
63 IF c o n s hv [m] / = al m [m] [n] THEN 0 ELSE l s [m] [n] ENDIF]] ;
64
65 p e n a l t i e s ’ = [[m: nodes] [[n : nodes]
66 IF p e n a l t i e s [m] [n]<P THEN
67 IF c o n s hv [m] [n]=0 THEN p e n a l t i e s [m] [n]+1
68 ELSE IF r e w a r d s [m] [n]=R−1 THEN 0 ELSE p e n a l t i e s [m] [n] ENDIF
69 ENDIF
70 ELSE p e n a l t i e s [m] [n] ENDIF]] ;
71
72 rewards ’ = [[m: nodes] [[n : nodes]
73 IF c o n s hv [m] [n]=0 THEN 0
74 ELSE IF r e w a r d s [m] [n]=R−1 THEN 0 ELSE r e w a r d s [m] [n]+1 ENDIF ENDIF]] ;
75
76 dd2 prev ’ = [[i : nodes]
77 IF FORALL(j : nodes) : p e n a l t i e s [j] [i]<P THEN
78 IF (f v e c p r e v [i]= ben OR EXISTS (j , l : nodes) : l s p r e v [i] [j] / = c o n s h v [l] [j])
79 THEN IF d d 2 p r e v [i]<2∗P THEN d d 2 p r e v [i]+1 ELSE d d 2 p r e v [i] ENDIF
80 ELSE 0 ENDIF
81 ELSE d d 2 p r e v [i] ENDIF] ;
82 dd2 prev2 ’ = d d 2 p r e v ;
83
84 dd prev ’ = [[i : nodes]
85 IF FORALL(j : nodes) : p e n a l t i e s [j] [i]<P THEN
86 IF (f v e c p r e v [i]= ben OR EXISTS (j , l : nodes) : l s p r e v [i] [j] / = c o n s h v [l] [j])
87 THEN IF d d p r e v [i]<P THEN d d p r e v [i]+1 ELSE d d p r e v [i] ENDIF
88 ELSE IF R dd prev [i]=R THEN 0 ELSE d d p r e v [i] ENDIF ENDIF
89 ELSE d d p r e v [i] ENDIF] ;
90
91 R dd prev ’ = [[i : nodes]
92 IF f v e c p r e v [i]= ben OR EXISTS (j , l : nodes) : l s p r e v [i] [j] / = c o n s hv [l] [j] THEN 0
93 ELSE IF R dd prev [i]<R THEN R dd prev [i]+1 ELSE R dd prev [i] ENDIF ENDIF] ;
94
95 d d s y n c h r p r e v ’ = [[i : nodes]
96 IF d d s y n c h r p r e v [i] AND
97 d d p r e v [i]<(P DIV 2) + (P MOD 2) AND
98 (d d p r e v [i] = (P DIV 2) + (P MOD 2)−1 =>
99 f v e c p r e v [i] / = ben AND FORALL(j , l : nodes) : l s p r e v [i] [j]= c on s h v [l] [j])

100 THEN t r u e
101 ELSE f a l s e ENDIF] ;
102
103 pc ’ = 0 ;
104 []
105 ELSE −−>
106]
107 END;
108
109
110 synch rony : THEOREM sys tem |− G(FORALL(m, n : nodes) : pc =0 AND d d s y n c h r p r e v [n] AND o b e d i e n t [n] => p e n a l t i e s [m] [n]<P) ;
111 l i v e n e s s : THEOREM sys tem |− G(FORALL(m, n : nodes) : pc =0 AND d d 2 p r e v 2 [n]=2∗P AND o b e d i e n t [n] => p e n a l t i e s [m] [n]=P) ;
112 END

22

TABLE XII
SAL CODE OF THE PARTITIONABLE MEMBERSHIP PROTOCOL (PART 1)

1 pmembership { ;N: n a t u r a l , P : n a t u r a l , R : n a t u r a l } : CONTEXT = BEGIN
2
3 %t y p e s and c o n s t a n t d e c l a r a t i o n comes h e r e
4
5 sys tem : MODULE =
6 BEGIN
7 LOCAL
8 %only v a r i a b l e s new t o p a r t i t i o n a b l e membership a r e l i s t e d h e r e
9 al mv : ARRAY nodes OF matdomain ,

10 cons mv :ARRAY nodes OF vecdomain ,
11 f v e c p r e v 2 : ARRAY nodes OF fdomain ,
12 f v e c p r e v 3 : ARRAY nodes OF fdomain ,
13 p s t a r t : [1 . . N] ,
14 k : [0 . . N] ,
15 k p r e v : [0 . . N] ,
16 k p r e v 2 : [0 . . N] ,
17 k p r e v 3 : [0 . . N] ,
18 i n a c t i v e : ARRAY nodes OF BOOLEAN,
19 d d 2 p r e v 3 : ARRAY nodes OF [0 . . 2∗ P] ,
20 d d s y n c h r p r e v 2 : ARRAY nodes OF BOOLEAN
21 INITIALIZATION
22 %on l y v a r i a b l e s new t o p a r t i t i o n a b l e membership a r e l i s t e d h e r e
23 al mv = [[n : nodes] [[m: nodes] [[l : nodes] 1]]] ;
24 cons mv = [[n : nodes] [[m: nodes] 1]] ;
25 f v e c p r e v 2 = [[n : nodes] c o r r] ;
26 f v e c p r e v 3 = [[n : nodes] c o r r] ;
27 p s t a r t = 1 ;
28 k = 0 ;
29 k p r e v = 0 ;
30 k p r e v 2 = 0 ;
31 k p r e v 3 = 0 ;
32 i n a c t i v e = [[n : nodes] f a l s e] ;
33 d d 2 p r e v 3 = [[n : nodes] 0] ;
34 d d s y n c h r p r e v 2 = [[n : nodes] t r u e]
35 TRANSITION
36 [
37 ([] (k c u r r : [0 . . N]) : ([] (ps : [1 . . N]) :
38 pc =0 −−>
39 fvec ’ IN {v :ARRAY nodes OF fdomain | f c o u n t e r (v , fvec , f v e c p r e v , f v e c p r e v 2 , byz , N,0)<=1 AND
40 N > 2∗ f c o u n t e r (v , fvec , f v e c p r e v , f v e c p r e v 2 , symm , N, 0) + 2∗ f c o u n t e r (v , fvec , f v e c p r e v , f v e c p r e v 2 , byz , N, 0) +
41 2∗ f c o u n t e r (v , fvec , f v e c p r e v , f v e c p r e v 2 , ben , N, 0) +
42 2∗ p c o u n t e r (v , fvec , f v e c p r e v , f v e c p r e v 2 , k c u r r , k , k p rev , k prev2 , N, 0) +1
43 AND FORALL(n : nodes) : i n a c t i v e [n] => v [n]= ben } ;
44 f v e c p r e v ’= f v e c ;
45 f v e c p r e v 2 ’= f v e c p r e v ;
46 f v e c p r e v 3 ’= f v e c p r e v 2 ;
47 k ’ = k c u r r ;
48 k prev ’ = k ;
49 k prev2 ’ = k p r e v ;
50 k prev3 ’ = k p r e v 2 ;
51 p s t a r t ’= ps ;
52 pc ’ = 1 ;))
53 []
54 pc =1 −−>
55 l s ’ IN {v :ARRAY nodes OF vecdomain |FORALL(m, n : nodes) :
56 (k=0 OR
57 (n /= k AND m/= k) OR
58 n=m OR
59 n<p s t a r t =>
60 (f v e c [n] = c o r r OR f v e c [n]=symm => v [m] [n] = 1) AND
61 (f v e c [n]= ben => v [m] [n] = 0)) AND
62 (NOT(k=0 OR (n /= k AND m/= k) OR n=m OR n<p s t a r t) => v [m] [n] = 0) AND
63 v [m] [n] / = 2} ;
64 l s p r e v ’= l s ;
65 o b e d i e n t ’ = [[n : nodes] IF f v e c [n]= byz OR f v e c [n]=symm THEN f a l s e ELSE o b e d i e n t [n] ENDIF] ;
66 pc ’ = 2 ;
67 []
68 pc =2 −−>
69 al m ’ IN {v :ARRAY nodes OF matdomain |FORALL(m, n : nodes) :
70 (f v e c [n]= c o r r AND l s [m] [n] / = 0 => v [m] [n]= l s p r e v [n]) AND
71 (l s [m] [n]=0 <=> v [m] [n] = [[l : nodes] 2]) AND
72 ((EXISTS (l : nodes) : v [m] [n] [l]=2)=>v [m] [n] = [[l : nodes] 2]) AND
73 (f v e c [n]=symm => FORALL(l , k : nodes) : v [m] [n] [l]= v [k] [n] [l]) } ;
74
75 al mv ’ IN {v :ARRAY nodes OF matdomain |FORALL(m, n : nodes) :
76 (f v e c [n]= c o r r AND l s [m] [n] / = 0 =>
77 v [m] [n] = [[l : nodes] IF p e n a l t i e s [n] [l]=P THEN 0 ELSE 1 ENDIF]) AND
78 (l s [m] [n]=0 <=> v [m] [n] = [[l : nodes] 2]) AND
79 ((EXISTS (l : nodes) : v [m] [n] [l]=2)=>v [m] [n] = [[l : nodes] 2]) AND
80 (f v e c [n]=symm => FORALL(l , k : nodes) : v [m] [n] [l]= v [k] [n] [l]) } ;
81 pc ’ = 3 ;
82 []

23

TABLE XIII
SAL CODE OF THE PARTITIONABLE MEMBERSHIP PROTOCOL (PART 2)

83 pc =3 −−>
84 cons hv ’ = [[n : nodes] IF EXISTS (j : nodes) : h maj (a l m [n]) [j]=2 THEN l s p r e v [n] ELSE h maj (a l m [n]) ENDIF] ;
85 cons mv ’ = [[n : nodes] maj (a l mv [n])] ;
86 pc ’ = 4 ;
87 []
88 pc =4 −−>
89 l s ’ = [[m: nodes] [[n : nodes] IF c o n s hv [m] / = al m [m] [n] THEN 0 ELSE l s [m] [n] ENDIF]] ;
90
91 p e n a l t i e s ’ = [[m: nodes] [[n : nodes]
92 IF p e n a l t i e s [m] [n]<P THEN
93 IF c o n s hv [m] [n]=0 THEN p e n a l t i e s [m] [n]+1
94 ELSE IF r e w a r d s [m] [n]=R−1 THEN 0 ELSE p e n a l t i e s [m] [n] ENDIF ENDIF
95 ELSE p e n a l t i e s [m] [n] ENDIF]] ;
96
97 rewards ’ = [[m: nodes] [[n : nodes]
98 IF c o n s hv [m] [n]=0 THEN 0
99 ELSE IF r e w a r d s [m] [n]=R−1 THEN 0 ELSE r e w a r d s [m] [n]+1 ENDIF ENDIF]] ;

100
101 dd2 prev ’ = [[i : nodes]
102 IF (f v e c p r e v [i]= ben OR EXISTS (j ,m: nodes) :
103 i s p r i m p a r t (m, k , k p rev , k prev2 , k p r e v 3) AND (NOT i n a c t i v e [m]) AND l s p r e v [i] [j] / = c o n s hv [m] [j])
104 THEN IF d d 2 p r e v [i]<2∗P THEN d d 2 p r e v [i]+1 ELSE d d 2 p r e v [i] ENDIF
105 ELSE 0 ENDIF] ;
106 dd2 prev2 ’ = d d 2 p r e v ;
107 dd2 prev3 ’ = d d 2 p r e v 2 ;
108
109 dd prev ’ = [[i : nodes]
110 IF (f v e c p r e v [i]= ben OR EXISTS (j ,m: nodes) :
111 i s p r i m p a r t (m, k , k p rev , k prev2 , k p r e v 3) AND (NOT i n a c t i v e [m]) AND l s p r e v [i] [j] / = c o n s hv [m] [j])
112 THEN IF d d p r e v [i]<P THEN d d p r e v [i]+1 ELSE d d p r e v [i] ENDIF
113 ELSE IF R dd prev [i]=R THEN 0 ELSE d d p r e v [i] ENDIF ENDIF] ;
114
115 R dd prev ’ = [[i : nodes]
116 IF f v e c p r e v [i]= ben OR EXISTS (j ,m: nodes) :
117 i s p r i m p a r t (m, k , k p rev , k prev2 , k p r e v 3) AND (NOT i n a c t i v e [m]) AND l s p r e v [i] [j] / = c o n s hv [m] [j] THEN 0
118 ELSE IF R dd prev [i]<R THEN R dd prev [i]+1 ELSE R dd prev [i] ENDIF ENDIF] ;
119
120 d d s y n c h r p r e v ’ = [[i : nodes]
121 IF d d s y n c h r p r e v [i] AND
122 d d p r e v [i]<(P DIV 2) + (P MOD 2) AND
123 (d d p r e v [i] = (P DIV 2) + (P MOD 2)−1 =>
124 f v e c p r e v [i] / = ben AND (FORALL(j ,m: nodes) :
125 i s p r i m p a r t (m, k , k p rev , k prev2 , k p r e v 3) AND (NOT i n a c t i v e [m]) => l s p r e v [i] [j]= c o n s hv [m] [j]))
126 THEN t r u e
127 ELSE f a l s e ENDIF] ;
128 d d s y n c h r p r e v 2 ’= d d s y n c h r p r e v ;
129
130 i n a c t i v e ’ = [[n : nodes] IF i n a c t i v e [n] OR EXISTS (m: nodes) : cons mv [n] [m]=2 THEN t r u e ELSE f a l s e ENDIF] ;
131 pc ’ = 0 ;
132 []
133 ELSE −−>
134]
135 END;
136 psynchrony : THEOREM sys tem |− G(FORALL(n ,m: nodes) : pc =0 AND d d s y n c h r p r e v 2 [n] AND o b e d i e n t [n] AND (NOT i n a c t i v e [m])
137 => cons mv [m] [n] = 1) ;
138 p l i v e n e s s : THEOREM sys tem |− G(FORALL(m, n : nodes) : pc =0 AND d d 2 pr e v 3 [n]=2∗P AND o b e d i e n t [n] AND (NOT i n a c t i v e [m])
139 => cons mv [m] [n] = 0) ;
140 END

