Abortable Fork-Linearizable Storage*

Matthias Majuntke, Dan Dobre, Marco Serafini, and Neeraj Suri

{majuntke,dan,marco,suri}@cs.tu-darmstadt.de
 TU Darmstadt, DEEDS Group,
 Hochschulstraße 10, 64289 Darmstadt, Germany

Abstract. We address the problem of emulating a shared read/write memory in a message passing system using a storage server prone to Byzantine failures. Although cryptography can be used to ensure confidentiality and integrity of the data, nothing can prevent a malicious server from returning obsolete data. Fork-linearizability [1] guarantees that if a malicious server hides an update of some client from another client, then these two clients will never see each others' updates again. Fork-linearizability is arguably the strongest consistency property attainable in the presence of a malicious server. Recent work [2] has shown that there is no fork-linearizable shared memory emulation that supports wait-free operations. On the positive side, it has been shown that lockbased emulations exist [1,2]. Lock-based protocols are fragile because they are blocking if clients may crash. In this paper we present for the first time lock-free emulations of fork-linearizable shared memory. We have developed two protocols, LINEAR and CONCUR. With a correct server, both protocols guarantee linearizability and that every operation successfully completes in the absence of step contention, while interfering operations terminate by aborting. The CONCUR algorithm additionally ensures that concurrent operations invoked on different registers complete successfully.

Keywords: Fork-linearizability, abortable objects, lock-freedom, shared memory, online collaboration

1 Introduction

Fast broadband access to the Internet allows users to benefit from online services such as storing their data remotely and sharing it with other users. Examples for such services, also known as storage or computing "clouds" are Amazon S3, Nirvanix CloudNAS, and Microsoft SkyDrive [3]. These services offer full data administration such that a user does not need to care for backups or server maintenance and the data is available on demand. Such an infrastructure makes online collaboration (multiple users working on the same logical data) based on

^{*} Research funded in part by IBM Faculty Award, Microsoft Research, and DFG GRK 1362 (TUD GKmM).

shared storage very attractive. Examples of existing solutions for online collaboration are the well-known revision control systems like CVS [4] and SVN [5], the storage management system WebDAV [6], upcoming Web 2.0 applications [7] like Google docs [8], and a large number of distributed file systems [9].

Online collaboration usually assumes that the participating clients trust each other — otherwise there exists no basis for reasonable communication. However, when the shared storage is provided by a third party, clients may not fully trust the service, e.g. it can corrupt or leak sensitive data. Cryptographic techniques such as hash functions, message authentication codes (MACs) and signatures can be used to prevent unauthorized access to data (confidentiality) and undetectable corruption of the data (integrity). Progress and consistency cannot always be guaranteed when the storage service¹ is untrusted. A malicious server may simply refuse to process client requests and it can violate linearizability by omitting a recent update of one client and presenting an outdated value to another client. This split brain attack is called *forking* and cannot be prevented. However, once a forking attack is mounted, it can be easily detected using a fork-linearizable storage protocol. Fork-linearizability [1] ensures that once two clients are forked, they never see each others' updates after that without revealing the server as faulty. Without fork-consistency, a malicious server is able to present data updates to clients in such a way that no client can say whether the set of updates of other clients it sees is complete or not, nor can such malicious behavior be easily detected, making reliable collaboration impossible. Once such a partitioning occurs, the clients stop hearing from each other. A client that has not seen updates from another client for a while can use out-of-band communication (as e.g. phone or e-mail) to find out if the server is misbehaving.

Recent work [2] has shown that even if the server behaves correctly, clients cannot complete their operations independently from each other because this introduces a vulnerability that can be exploited by a Byzantine server to violate fork-linearizability. This means that in an asynchronous system there is no *wait-free* [10] emulation of fork-linearizable storage on a Byzantine server. On the positive side, the SUNDR [1] protocol and the concurrent protocol by Cachin *et al.* [2] show the existence of fork-linearizable Byzantine emulations using locks. However, lock-based protocols are problematic as they can block in the presence of faulty clients that crash while holding the lock.

Paper Contributions In this paper we present two lock-free emulations of forklinearizable shared memory on an untrusted server. In runs in which the server behaves correctly, our proposed protocols LINEAR and CONCUR ensure linearizability [11], and that each operation executed in the absence of concurrency successfully completes. Under concurrency, operations may complete by aborting. Both protocols emulate a shared memory consisting of n single-writer multiplereader (SWMR) registers, one for each of the n clients, where register i is updated only by client C_i and may be read by all clients. While both protocols address lock-free fork-linearizability, they solve two distinct issues. The LIN-

¹ We will use the terms storage service, storage server, and server interchangeably.

EAR protocol, which is the first *lock-free* fork-linearizable implementation at all, offers a communication complexity of $\mathcal{O}(n)$. The CONCUR protocol improves on the handling of concurrent operations such that overlapping operations accessing *different* registers are not perceived as concurrent, and therefore they are not aborted. However, it has a communication complexity of $\mathcal{O}(n^2)$. Both protocols allow concurrent operations to abort in order to circumvent the impossibility result by Cachin *et al.* [2]. The necessary condition for aborting is step contention [12], and thus, pending operations of crashed clients never cause other operations to abort. As a final contribution, note that the existence of abortable fork-linearizable storage implies the existence of obstruction-free [13] fork-linearizable storage.

We now give a rough intuition of why aborting helps to circumvent the given impossibility of wait-free fork-linearizability. With both our protocols, if multiple operations compete for the same register, then there is only one winner and all other operations are aborted. On a correct server, this strategy ensures that all successful operations applied to the same register access the register sequentially. Operations have timestamps attached to them and the sequential execution establishes a total order on operations and the corresponding timestamps. The algorithm ensures that a forking attack breaks the total order on timestamps. If a malicious server does not present the most recent update to a read operation, then the timestamps of the omitted write operation and that of the read operation become incomparable and the two clients are forked. The algorithm guarantees that also future operations of those two clients cannot be ordered and thus they remain forked forever.

2 Related Work

Mazières and Shasha [1] have introduced the notion of fork-linearizability and they have implemented the first fork-linearizable multi-user network file system SUNDR. The SUNDR protocol may block in case a client crashes even when the storage server is correct. Cachin et al. [2] implements a more efficient forklinearizable storage protocol based on SUNDR which reduces communication complexity from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. The presented protocols are blocking and thus they have the same fundamental drawback as SUNDR. The authors [2] also prove that there is no wait-free emulation of fork-linearizable storage. They do so by exhibiting a run with concurrent operations where some client has to wait for another client to complete. Oprea and Reiter [14] define the weaker notion of fork-sequential consistency. Intuitively the difference to fork-linearizability is that fork-sequential consistency does not necessarily preserve the real-time order of operations from different clients. In a recent work, Cachin et al. [15] show that there is no wait-free emulation of fork-sequential consistent storage on a Byzantine server. It is important to note that these impossibility results do not rule out the existence of emulations of fork-linearizable storage with abortable operations [16] or weaker liveness guarantees such as obstruction-freedom [13]. Cachin et al. [17] presents the storage service FAUST which wait-free emulates a

shared memory with a new consistency semantics called *weak fork-linearizability*. The notion of weak fork-linearizability weakens fork-linearizability in two fundamental ways. After being forked, two clients may see each others' updates once (at-most-on-join property) and secondly, the real-time order among the operations which are the last of each client is not ensured.

Li and Mazières [18] study systems where storage is implemented from 3f + 1 server replicas and more than f replicas are Byzantine faulty. They present a storage protocol which ensures fork* consistency. Similar to weak fork-linearizability, fork* consistency allows that two forked clients may be joined at most once (at-most-one-join property).

The notion of abortable objects has been introduced by Aguilera *et al.* [16]. The paper shows the existence of a universal abortable object construction from abortable registers. It is the first construction of an obstruction-free universal type from base objects weaker than registers. In a follow-up paper [19] it has been shown that in a partially synchronous system, abortable objects can be boosted to wait-free objects. This makes abortable objects, including our abortable fork-linearizable read/write emulation very attractive.

Summing up, to date there is no lock-free emulation of fork-linearizable storage even though lock-free solutions can be made practically wait-free using boosting techniques as described by Aguilera *et al.* [19].

3 System Model and Definitions

Similar to the models used in recent work on fork-linearizability [2],[1], we consider a distributed system consisting of a single server S and n clients C_1, \ldots, C_n . The clients may fail by crashing but they never deviate from the protocol. The server may be faulty and deviate arbitrarily from its protocol exhibiting nonresponsive-arbitrary faults [20] (Byzantine [21]). The clients communicate with the server by sending messages over reliable channels directly to the server, forming an asynchronous network. The *shared functionality* provided by the server is a *read/write register*. A read/write register provides *operations* by which the clients can access the register. An operation is defined by two events, an invocation event and a response event. To represent an abort of execution, there are two types of response events: ABORT and OK events respectively. An additional event type constitute *crash* events representing the act of a client failing. We call operation op complete, if there exists a matching response event to the invocation event of op, else op is denoted as *incomplete*. An operation is *successful*, iff it is complete and the response event is an OK event. An operation is *aborted*, if it is complete and the response event is an ABORT event. Operation op precedes operation op' iff op is complete before the invocation event of op'. If op precedes op' we denote op and op' as sequential operations. Else, if neither operation precedes the other, then op and op' are said to be are *concurrent*. An *execution* of the system is defined as the sequence of events occurring at the clients.

A read/write register X[i] provides a *Read* and a *Write* operation to the clients. The response event to a client's operation is either OK or ABORT. Client

 C_i may use the Write operation to store a value v from domain Value in register X[i], denoted as Write(i, v). If the response to a Read of register X[i] is OK, then a value v is returned, denoted as $Read(i) \rightarrow v$. The server implements n single-writer multiple-reader (SWMR) registers $X[1 \dots n]$ where each client C_i writes only to X[i] and may read from all other registers. The sequential specification of a register requires that if a Read operation returns a value, it returns the value written by the last preceding Write operation.

We assume that each client interacts *sequentially* with the read/write register, i.e. a client invokes a new operation only after the previous operation has completed.

Further we assume that clients have access to a digital signature scheme used by each client to *sign* its messages such that any other client can determine the authenticity of a message by *verifying* the corresponding signature. Further, the Byzantine server is not able to forge the signatures.

The consistency condition for the read/write register is defined in terms of the sequence σ of events the shared register exhibits in an execution as observed by the clients. Such a sequence, also called *history*, contains invocation, response, and crash events. To ease the definition of consistency conditions and the reasoning about correctness, we define two transformations to derive simpler histories from more complicated ones, while maintaining plausibility of execution. Intuitively, the transformations remove all operations from a history that do not take effect.

Definition 1 An operation *op* of client *takes effect* if and only if

- 1. op is successful OR
- 2. op is a Write operation and

there exists a *Read* operation that returns the value written by op.

We now define the two transformations CRASHCOMPLETE and ABORTCOMPLETE.

Definition 2 The transformations CRASHCOMPLETE and ABORTCOMPLETE take a sequence of events σ as input and return a sequence of events σ' as output.

- CRASHCOMPLETE: We define σ' returned by CRASHCOMPLETE by construction: At first we add all events from σ to σ' . Then, we remove the invocation events of *incomplete* operations that did not take effect and the corresponding crash event if one exists² from σ' . Next, we add a matching OK event to each remaining *incomplete* operation and remove all remaining crash events in σ' .
- ABORTCOMPLETE: We define σ' returned by ABORTCOMPLETE by construction: At first we add all events from σ to σ' . Then, we remove all events of aborted operations in σ' that did not take effect. Next, we replace all remaining ABORT events in σ with matching OK events.

 $^{^2}$ Note, that the last operation of each client in σ might be incomplete even if the client did not crash.

Variables used by Algorithm 2 and 3:		
sig signature	/* signature /*	
abort boolean	<pre>/* flags if operation is aborted /*</pre>	
$value_{suc}$ value	/* written value of last successful write /*	
<i>retval</i> value	/* return value of the read operation /*	
Variables used by Algorithm 2:		
op_cnt integer	<pre>/* operation counter /*</pre>	
op, x_op, lso operation with fields $id = (client_id, op_cnt, type, reg), value, tsv, sig$		
	<pre>/* operation structure /*</pre>	
$tsv_{comp}[1n]$ vector of integers /* ts vector of last completed operation /*		
ts_{suc} integer	<pre>/* timestamp of last successful operation /*</pre>	
Variables used by Algorithm 3:		
$op_cnt[1n]$ array of integer	<pre>/* operation counter /*</pre>	
op, x_op, lso operation with fields $id = (client_id, op_cnt, type, reg), value, tsm, sig$		
	<pre>/* operation structure /*</pre>	
$tsm_{comp}^{1n}[1n]$ timestamp matrix of integers /* ts matrix of last completed		
	operation /*	
$ts_{suc}[1n]$ vector of integers /	<pre>/* timestamps of last successful operations /*</pre>	

Fig. 1. Variables for Algorithms 2 and 3

Transformation CRASHCOMPLETE removes incomplete operations that did not take effect from σ . This is reasonable as such events do not influence the execution. Instead of removing them, such events could also be moved to the end of sequence σ . The same argument applies to aborted operations that do not take effect which are removed by transformation ABORTCOMPLETE. By first applying transformation CRASHCOMPLETE and then transformation ABORTCOMPLETE to sequence σ , we have transformed σ into a sequence of events containing only successful operations. On the transformed sequence we give two equivalent definitions of fork-linearizability taken from recent work of Cachin *et al.* [2].

Definition 3 (Fork-Linearizability) A sequence of events σ observed by the clients is called *fork-linearizable* with respect to a functionality F if and only if for each client C_i , there exists a subsequence σ_i of σ consisting only of completed operations and a sequential permutation π_i of σ_i such that:

- 1. All completed operations in σ occurring³ at client C_i are contained in σ_i ; and
- 2. π_i preserves the real-time order of σ_i ; and
- 3. the operations of π_i satisfy the sequential specification of F; and
- 4. for every $op \in \pi_i \cap \pi_j$, the sequence of events that precede op in π_i is the same as the sequence of events that precede op in π_j .

³ All successful operations of client C_i occur at client C_i ; together with condition 3. this further includes all operations on which an operation of client C_i causally depends, i.e. operations that have written a value client C_i reads.

Definition 4 (Global Fork-Linearizability) A sequence of events σ observed by the clients is called *fork linearizable* with respect to a functionality F if and only if there exists a sequential permutation π of σ such that:

- 1. π preserves the real-time order of σ ; and
- 2. for each client C_i there exists a subsequence π_i of π such that:
 - (a) events in π occurring at client C_i are contained in π_i ; and
 - (b) the operations of π_i satisfy the sequential specification of F; and
 - (c) for every $op \in \pi_i \cap \pi_j$, the sequence of events that precede op in π_i is the same as the sequence of events that precede op in π_j .

Using two distinct but equivalent definitions of fork-linearizability simplifies the correctness proof of protocol LINEAR (by using Definition 3) and of protocol CONCUR (by using Definition 4). The notion of fork-linearizability and global fork-linearizability has shown to be equivalent [2].

4 The Protocols

In this section we present two lock-free protocols LINEAR and CONCUR that emulate a fork-linearizable shared memory on a Byzantine server. The LINEAR protocol is based on *vectors* of timestamps (described later in section 4.2) resulting in a communication complexity of $\mathcal{O}(n)$. The LINEAR protocol serializes all operations, and therefore it aborts concurrent operations even if they are applied to distinct registers. The CONCUR protocol (introduced later in section 4.3) allows for concurrent operations if they are applied to distinct registers and only operations on the same register are serialized. To achieve this, timestamp *matrices* are used leading to a communication complexity of $\mathcal{O}(n^2)$.

4.1 **Protocol Properties**

As mentioned above, LINEAR and CONCUR introduced emulate the shared functionality of a read/write register among a collection of clients and a (possibly) Byzantine server S. The LINEAR (CONCUR) protocol consists of two algorithms, run by the clients and the server respectively. If the server is faulty, it may refuse to respond to client requests or return (detectably) corrupted data such that liveness of the emulated functionality is violated. A malicious server may also mount a forking attack and partition clients. However, if the server behaves correctly, we require that the emulation does not block and clients are not forked.

To formalize the desired properties of the LINEAR and CONCUR protocol, we redefine the notion of *sequential* and *concurrent* operations under step contention [22] when the server is correct. We say that two operations op and op'are *sequential under step contention* if op' does not perform steps at the server S after op performed its first step and before op performed its last step at server S. Otherwise, op and op' are *concurrent under step contention*. The LINEAR and CONCUR protocol satisfy *Fork-consistency* and two liveness properties *Nontriviality* and *Termination*:

Algorithm 1: Read	/ Write O	Dependence of $Client i$
-------------------	-----------	--------------------------

Read(j) do	Write(v) do
$rw_operation(\text{READ}, \perp, j)$	$rw_operation(WRITE, v, i)$
if abort then return ABORT	if abort then return ABORT
return <i>retval</i>	return OK

- Fork-consistency: Every execution of the LINEAR and CONCUR protocols satisfies fork-linearizability with respect to a shared read/write register emulated on a Byzantine server S. If S is correct, then every execution is complete and has a linearizable history.
- **Nontriviality**: When the server is correct, in an execution of the LINEAR (resp. CONCUR) protocol every operation that returns *abort* is concurrent under step contention with another operation (resp. with another operation on the same register).
- **Termination**: When the server is correct and σ is the sequence of events exhibited by an execution of the LINEAR or CONCUR protocol, then after applying transformation CRASHCOMPLETE to σ , every operation in σ is complete.

4.2 The Linear Protocol

The LINEAR protocol is based on two main ideas. The first idea is that when two or more operations access the registers concurrently, all but one are aborted. In the protocol, operations need two rounds of communication with the server, and an operation *op* is aborted if a first round message of another operation arrives at the server between the points in time when the first round message and the second round message of *op* is received by the server. Hence, among the concurrent operations, the LINEAR protocol does not abort the "newest" operation. This scheme ensures that a pending operation of a crashed client does not interfere with other operations. Observe that using this strategy of aborting, successful operations execute in isolation and therefore accesses to the shared memory are serialized.

As a second idea, the LINEAR protocol assigns vector timestamps to operations such that a partial order \leq on operations can be defined based on these timestamp vectors. The basic principle is that a client reads the most recent timestamp vector from the server during the first round, increments its own entry and writes the updated timestamp vector back to the server. Since successful operations run in isolation, the corresponding timestamp vectors are totally ordered, as no two successful operations read the same timestamp vector during the first round. Clearly, a Byzantine server may fork two clients, but then there are operations of these two clients op and op' with incomparable timestamp vectors. By the requirement of fork-linearizability, these two clients must not see any later updates of each other. For this purpose, the protocol ensures that the

Algorithm 2: LINEAR Protocol, Algorithm of Client <i>i</i>	Algorithm 3: CONCUR Protocol, Algorithm of Client <i>i</i>	
2.1 $rw_operation(TYPE, value, r)$ do	3.1 $rw_operation(TYPE, value, r)$ do	
2.2 $abort \leftarrow false$	3.2 $abort \leftarrow false$	
2.3 $op_cnt \leftarrow op_cnt + 1$	3.3 $op_cnt[r] \leftarrow op_cnt[r] + 1$	
2.4 $op.id \leftarrow (i, op_cnt, TYPE, r)$	3.4 $op.id \leftarrow (i, op_cnt[r], TYPE, r)$	
2.5 send (SUBMIT, $op.id$) to server	3.5 send (SUBMIT, $op.id$) to server	
2.6 wait for message (SUBMIT_R, x_op , lso)	3.6 wait for message (SUBMIT_R, x_op , lso)	
2.7 if not	3.7 if not	
$verify(lso.sig) \land verify(x_op.sig)$ then	$verify(lso.sig) \land verify(x_op.sig)$ then	
halt	halt	
2.8 if not	3.8 if not	
$\forall k eq i : tsv_{comp}[k] \leq lso.tsv[k] \land$	$\forall k \neq i : tsm_{comp}^{r}[k] \leq lso.tsm^{r}[k] \land$	
$ts_{suc} = lso.tsv[i]$ then halt	$ts_{suc}[r] = lso.tsm^{r}[i]$ then halt	
2.9 if not $x_op.id.client_id = r$ then halt	3.9 if not $x_op.id.client_id = r$ then halt	
2.10 if not $x_{op} \leq lso \wedge$	3.10 if not $x_{op} \leq lso \wedge$	
$lso.tsv[r] = x_op.tsv[r]$	$lso.tsm^r[r] = x_op.tsm^r[r]$	
then halt	then halt	
	3.11 forall $k = 1n, k \neq r$ do	
	3.12 if not tsm_{comp}^k , $lso.tsm^k$ are comp-	
2.11 $op.tsv \leftarrow lso.tsv$	arable then halt	
*	3.13 $op.tsm^k \leftarrow \max\{tsm^k_{comp}, lso.tsm^k\}$	
	3.14 $op.tsm^r \leftarrow lso.tsm^r$	
2.12 $op.tsv[i] \leftarrow op_cnt$	3.15 $op.tsm^r[i] \leftarrow op_cnt[r]$	
2.13 if TYPE = WRITE then $op.value \leftarrow value$	3.16 if TYPE = WRITE then $op.value \leftarrow value$	
2.14 $sig \leftarrow sign(op.id op.value op.tsv)$	3.17 $sig \leftarrow sign(op.id op.value op.tsm)$	
2.15 $op.sig \leftarrow sig$	3.18 $op.sig \leftarrow sig$	
2.16 send (COMMIT, op) to server	3.19 send (COMMIT, op) to server	
2.17 wait for message $\langle \text{COMMIT}_R, ret_type \rangle$	3.20 wait for message $\langle COMMIT_R, ret_type \rangle$	
2.18 $tsv_{comp} \leftarrow op.tsv$	3.21 $tsm_{comp} \leftarrow op.tsm$	
2.19 if $ret_type = ABORT$ then	3.22 if $ret_type = ABORT$ then	
2.20 $op.value \leftarrow value_{suc}$	3.23 $op.value \leftarrow value_{suc}$	
2.21 $abort \leftarrow true$	3.24 $abort \leftarrow true$	
2.22 else	3.25 else	
2.23 $ts_{suc} \leftarrow op_cnt$	3.26 $ts_{suc}[r] \leftarrow op_cnt[r]$	
2.24 $value_{suc} \leftarrow op.value$	3.27 $value_{suc} \leftarrow op.value$	
2.25 if TYPE = READ then	3.28 if TYPE = READ then	
$retval \leftarrow x_op.value$	$retval \leftarrow x_op.value$	

two clients remain forked by preventing any client from committing an operation op'' which is both greater than op and op'.

Description of the LINEAR Protocol The shared memory emulated by the LINEAR protocol consists of n SWMR registers $X[1], \ldots, X[n]$ such that client C_i may write a value from set *Value* only to register X[i] and may read from any register. The detailed pseudo-code of the LINEAR protocol appears in Algorithm 1, 2 and 4 and the variables used are described in Figure 1.

A client performs two rounds of communication with the server S for both *Read* and *Write* operations (see Algorithm 1). This is implemented by calling procedure $rw_{operation}$ (Algorithm 2) with type READ or WRITE respectively. When executing $rw_{operation}$, the client sends a SUBMIT message to the server S announcing a read or write operation and waits for a matching response. The server S responds with a SUBMIT_R message containing information on the current state of the server and the value to be read. In the second communication

Algorithm 4: LINEAR Protocol, Algorithm of Server S	Algorithm 5: CONCUR Protocol, Algorithm of Server S
Variables:	Variables:
4.1 Pnd set of operation ids /* pend. ops */	5.1 $Pnd[1n]$ array of set of operation ids
4.2 Abrt set of operation ids /* pending ops	5.2 $Abrt[1n]$ array of set of operation ids
to be aborted */	/* pending ops to be aborted */
4.3 upon receiving message (SUBMIT, id) from	5.3 upon receiving message (SUBMIT, id) from
client i do	client i do
4.4 $Abrt \leftarrow Pnd$	5.4 $Abrt[id.reg] \leftarrow Pnd[id.reg]$
4.5 $Pnd \leftarrow Pnd \cup \{id\}$	5.5 $Pnd[id.reg] \leftarrow Pnd[id.reg] \cup \{id\}$
4.6 send (SUBMIT_R, $X[id.reg], lso$)	5.6 send (SUBMIT_R, $X[id.reg], lso[id.reg]$)
to client i	to client i
4.7 upon receiving message (COMMIT, op)	5.7 upon receiving message (COMMIT, op)
from client <i>i</i> do	from client <i>i</i> do
4.8 $Pnd \leftarrow Pnd \setminus \{op.id\}$	5.8 $Pnd[op.id.reg] \leftarrow$
	$Pnd[op.id.reg] \setminus \{op.id\}$
4.9 if $op.id \in Abrt$ then	5.9 if $op.id \in Abrt[op.id.reg]$ then
4.10 send $(\text{COMMIT_R}, \text{ABORT})$ to client i	5.10 send (COMMIT_R, ABORT) to client i
4.11 else	5.11 else
4.12 $X[i] \leftarrow op$	5.12 $X[i] \leftarrow op$
4.13 $lso \leftarrow op$	5.13 $lso[op.id.reg] \leftarrow op$
4.14 send (COMMIT_R, OK) to client i	5.14 send (COMMIT_R, OK) to client i

round, the client sends a COMMIT message to the server and waits for a COMMIT_R message to complete the operation. The COMMIT_R message is either of type OK or ABORT indicating to the client the outcome of the operation.

Each operation op has a timestamp vector of size n assigned to it during the protocol. The timestamp vector is part of the operation data structure and is denoted as *op.tsv*. The timestamp vector is used to define a partial order \leq on operations. For two operations op and op' we say that $op \leq op'$ iff $op.tsv[i] \leq$ op'.tsv[i] for all i = 1...n. Operations of the LINEAR protocol have the data structure of a 4-tuple with entries *id*, *value*, *tsv* and *sig*, where *sig* is a signature on the operation by the client, tsv is the timestamp vector, value is the value to be written by the operation. Note that for simplicity of presentation, a *Read* operation rewrites the value of the client's last successful Write. The entry *id* is a 4-tuple (*client_id*, *op_cnt*, *type*, *reg*) itself, where *client_id* equals *i* for C_i , *op_cnt* is a local timestamp of the client which is incremented during every operation, type indicates whether the operation is a READ or a WRITE, and req determines the index of the register the client intends to read from. For Write operations of client C_i , reg is always i. The server S maintains the n registers in a vector X[1..n], where each X[i] stores the last successful operation of C_i . Further, the server maintains an copy of the latest successful operation in variable lso.

When client C_i invokes a new operation op on register X[r], it increments its local timestamp op_cnt , sets the entries of op.id to the operation type and register r, and sends op.id in a SUBMIT message to the server (lines 2.2–2.5). The server labels the received operation op as *pending*. If the server receives the SUBMIT message of another operation before the COMMIT message of op, then opis aborted. The server then responds with a SUBMIT_R message containing the last successful operation lso, and the last successful operation x_op applied to register X[r] (lines 4.4–4.6).

After receiving operations lso and x_op from the server, client C_i performs a number of consistency checks (lines 2.7–2.10). If any of the checks fails, which implies that the server is misbehaving, then the client halts. In the first check, C_i verifies the signatures of lso and x_op . The next check is needed to determine a consistent timestamp vector for operation op. The goal is to obtain a timestamp vector for op which is greater than both lso's timestamp vector and that of C_i 's last completed operation. The timestamp vector of the latter is stored in tsv_{comp} at C_i . The client checks that all but the *i*th entry in lso.tsv are greater or equal than the corresponding entries in tsv_{comp} . C_i 's entry lso.tsv[*i*] must equal the timestamp of the last successful operation stored in ts_{suc} . Checks three and four are needed only by Read: C_i checks that x_op is indeed the content of register X[r]. The last check verifies that lso is at least as large as x_op and that lso.tsv[r] equals $x_op.tsv[r]$.

If all checks are passed, C_i increments its own entry lso.tsv[i] and lso.tsv becomes the timestamp vector of op. Then, C_i signs op.id, the write value and the timestamp vector op.tsv, and sends op in a COMMIT message to the server (lines 2.11–2.16). The server, removes op.id from the set of pending operations and checks if it has to be aborted. As mentioned earlier, if this is case, a SUBMIT message of another operation was received before the COMMIT of op and the server replies with ABORT (lines 4.8–4.10). Else, op is stored in X[i] and also stored in lso as the last successful operation and the server replies with OK (lines 4.12–4.14).

When client C_i receives the COMMIT_R message for operation op, op is completed and thus tsv_{comp} is updated with op.tsv. If op is successful, then additionally ts_{suc} becomes the *i*th entry of op.tsv. If op is a READ, then the value of x_{-op} is returned (lines 2.18–2.25).

Correctness Arguments Instead of returning the most recent value written to register X[j] by a write operation op_w , a Byzantine server may return an old value written by op'_w . Let C_i be the client whose read operation op_r reads the stale value written by op'_w . Observe that the Byzantine server returns a stale version of *lso* to C_i . Let us assume that all checks in Algorithm 2 are passed, thus C_i is unaware of the malicious behavior of the server. Note, that the *j*th entry in the timestamp vector of op'_w is smaller than the corresponding entry of op_w , as both are operations of client C_j whose *j*th entry increases with every operation. As the check in line 2.10 is passed, the *j*th entry in op_r 's timestamp vector is also smaller than the one of op_w . As C_i increments the *i*th entry in the timestamp vector during op_r but not the *j*th entry, op_r and op_w are incomparable. We argue that in this situation, no client commits an operation which is greater than both op_w and op_r . As no client other than C_i increments the *i*th entry in a timestamp vector, all operation of other clients that "see" op_w have a timestamp vector whose *i*th entry is smaller than $op_r tsv[i]$ and whose *j*th entry is larger than $op_r tsv[i]$. Thus, such operations are also incomparable with op_r and do not join

 op_w and op_r . When client C_i "sees" such an operation incomparable to op_r as the latest successful operation *lso*, the check in line 2.8 is not passed because the *i*th entry of *lso* is smaller than the timestamp of C_i 's last successful operation. Hence, C_i stops the execution. Analogously, the same arguments can be applied for client C_i and operation op_w .

As all checks are passed when the server behaves correctly, it is not difficult to see that with a correct server, all operations invoked by correct clients complete. Also with a correct server, operations are only aborted in the specified situations. For a detailed correctness proof we refer to appendix A.1.

4.3 The CONCUR Protocol

The CONCUR protocol differs from the LINEAR protocol in the way how concurrent access to the server is handled. In contrast to the LINEAR protocol, in the CONCUR protocol concurrent operations that access different registers at the server are not aborted. However, the same aborting scheme as in the LINEAR protocol is used in the CONCUR protocol on a register basis in order to serialize all accesses to the same register. This means, that a correct server aborts operation *op* accessing register *i* if and only if a SUBMIT message of another operation accessing register *i* is received while *op* is pending.

To deal with concurrent operations, in the CONCUR protocol, instead of one timestamp vector, each operation is assigned n timestamp vectors, each corresponding to one register. Such n timestamp vectors form the timestamp matrix of an operation. The basic idea is that when a client accesses register i then the client updates its own entry in the jth timestamp vector of the timestamp matrix. It is important to note that even with a correct server, the CONCUR protocol allows that two clients with concurrent operations may read the same timestamp matrix from the server and update different timestamp vectors such that the corresponding operations become incomparable. However, the CONCUR protocol ensures that (1) operations of the same client are totally ordered by <and (2) operations accessing the same register at the server are totally ordered by \leq . This is sufficient to show that for any operation op, all operations op causally depends on, are ordered before op by \leq . Further, the CONCUR protocol ensures that two forked operations — i.e. for some i, the *i*th timestamp vectors in the timestamp matrices of the two operations are incomparable — will never be rejoined by another operation.

Description of the CONCUR Protocol The CONCUR protocol has the same message pattern as the LINEAR protocol and provides the same interface to the clients (Algorithm 1). The CONCUR protocol uses a different implementation of procedure $rw_{-}operation$ as described in Algorithm 3, Figure 1, and Algorithm 5. As the CONCUR protocol follows the structure of the implementation of the LINEAR protocol, in the following we highlight only the differences between the two protocols. The *operation* data structure differs from the LINEAR protocol only to the fact that the timestamp vector tsv is replaced by a timestamp matrix tsm (Figure 1).

When client C_i invokes a new operation op on register r, it generates a new operation id which it sends to the server in a SUBMIT message (lines 3.2– 3.5). One difference is that C_i maintains a *separate* operation counter for each register $op_cnt[1..n]$. The server replies with operations lso and x_op contained in a SUBMIT_R message. Here, x_op is the last successful operation stored in register r, and lso is the last successful operation that accessed register r. Note, that lsomay not be stored in register r. The server maintains information on pending operations for each register separately (lines 5.4–5.6).

The first and the third check are identical to the LINEAR protocol. The second check on operations lso and x_op performed by the client corresponds to the second check in the LINEAR protocol. As CONCUR operations hold a timestamp matrix, the check is performed on the rth timestamp vectors of the timestamp matrices of lso and x_op . The goal is to obtain a timestamp matrix that makes op greater than the last completed operation of C_i and the last successful operation accessing register r, stored in lso. Like in the LINEAR protocol, the last check ensures that lso is greater than x_op and, unlike LINEAR, that the rth entries in the rth timestamp vector of the timestamp matrices of lso and x_op are equal. This particular entry is the one which has been updated during x_op (lines 3.7–3.10).

To determine the timestamp matrix for op, client C_i selects the *r*th timestamp vector from *lso* as *r*th timestamp vector of op and for all other indices it takes the maximum timestamp vector from *lso* and C_i 's last completed operation. Finally, client C_i increments its own entry in the *r*th timestamp vector using $op_cnt[r]$ (lines 3.12–3.15). The remainder of the protocol is analogous to the LINEAR protocol.

Correctness Arguments First, we show that all completed operations of client C_i are totally ordered by \leq . This is reasonable as C_i cannot know if an aborted operation was actually aborted by the malicious server. To achieve this, as the timestamp matrix of a new operation op of C_i depends on operation lso received in the SUBMIT_R message, the check in line 3.8 is needed: It guarantees together with lines 3.14-3.15 that the *r*th timestamp vector of lso is greater than the one of C_i 's last completed operation stored in tsm_{comp} . For the remaining timestamp vector among lso and tsm_{comp} is picked, that they are greater than the respective one of C_i 's last completed operation. Hence, operation op is greater than the last completed operation of C_i .

Second, we show that when C_i reads value $op_w.value$ from register j during op then op is greater than the corresponding operation op_w under \leq . Analogously, by the check in line 3.12 and lines 3.13–3.15, it also holds that op is greater than operation *lso*. As the check in line 3.10 ensures that op_w is smaller or equal than *lso*, by transitivity, op is greater than op_w .

These two proof sketches give an intuition how the CONCUR protocol ensures that all operations, op causally depends on, are ordered by \leq before op. For a detailed proof of the safety and liveness properties of the CONCUR protocol, we refer to appendix A.2.

4.4 Complexity

In the LINEAR and CONCUR protocol all operations need two communication rounds to complete. We argue why two rounds are necessary for Write operations: The reasoning is based on the fact that the information possibly written by some *one*-round *Write* is independent from some operations of other clients. Consider the following sequential run with a correct server and clients C_1 and C_2 : $Write_1(1, x), Read_2(1) \rightarrow x, Write_1(1, y), Read_2(1) \rightarrow y.$ Note, that by the oneround assumption, $Write_1(1, y)$ does not depend on the preceding $Read_2(1) \rightarrow x$. Thus, a Byzantine server may "swap" the order of these two operations unnoticeably. Hence, we can construct a run with a Byzantine server, which is indistinguishable for C_2 : $Write_1(1, x)$, $Write_1(1, y)$, $Read_2(1) \rightarrow x$, $Read_2(1) \rightarrow y$. As C_2 's second Read returns y, the run violates the sequential specification and thereby also fork-linearizability. Thus, two rounds are needed for Write operations and the Write operations emulated by the LINEAR and CONCUR protocol are optimal in this sense. We conjecture, that *Read* operations can be optimized in the the LINEAR and CONCUR protocol to complete after a single round. This would also imply that *Read* operations can be made *wait-free*.

The messages exchanged during the LINEAR protocol have size $\mathcal{O}(2(n + \iota + |v| + \varsigma))$, where ι is the length of an operation id, |v| denotes the maximal length of a value from *Value* and ς is the length of a signature. The message complexity of the CONCUR protocol is in $\mathcal{O}(2(n^2 + \iota + |v| + \varsigma))$.

5 Conclusion

We have presented lock-free emulations of fork-linearizable shared memory on a Byzantine server, LINEAR and CONCUR. The LINEAR protocol is based on timestamp vectors and it has a communication complexity of $\mathcal{O}(n)$. It is the first lock-free protocol that emulates fork-linearizable storage at all. The impossibility result by Cachin *et al.* [2] is circumvented by aborting concurrent operations. The CONCUR protocol improves on the LINEAR protocol in the way how concurrent operations are handled. In the CONCUR protocol only concurrent operations accessing the same register need to be aborted. To achieve this, the CONCUR protocol relies on timestamp matrices and has a communication complexity of $\mathcal{O}(n^2)$.

References

- Mazières, D., Shasha, D.: Building Secure File Systems out of Byzantine Storage. In: PODC, New York, NY, USA, ACM (2002) 108–117
- Cachin, C., Shelat, A., Shraer, A.: Efficient Fork-Linearizable Access to Untrusted Shared Memory. In: PODC, New York, NY, USA, ACM (2007) 129–138

- Cachin, C., Keidar, I., Shraer, A.: Trusting the Cloud. ACM SIGACT News, Distributed Computing in the Clouds 40(2) (June 2009) 81–86
- 4. CVS: Concurrent Versions System. Website Available online at http://www.nongnu.org/cvs/; visited June 2009.
- SVN: Subversion. Website Available online at http://subversion.tigris.org/; visited June 2009.
- Whitehead, Jr., E.J.: World Wide Web Distributed Authoring and Versioning (WebDAV): An Introduction. StandardView 5(1) (1997) 3–8
- Yang, J., Wang, H., Gu, N., Liu, Y., Wang, C., Zhang, Q.: Lock-free Consistency Control for Web 2.0 Applications. In: WWW, New York, NY, USA, ACM (2008) 725–734
- Google Inc.: Google docs. Website Available online at http://docs.google.com; visited June 2009.
- Wikipedia: List of file systems, distributed file systems. Website Available online at http://en.wikipedia.org/wiki/List_of_file_systems; visited June 2009.
- Herlihy, M.: Wait-Free Synchronization. ACM Trans. Program. Lang. Syst. 13(1) (1991) 124–149
- Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12(3) (1990) 463–492
- Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The Complexity of Obstruction-Free Implementations. J. ACM 56(4) (2009) 1–33
- Herlihy, M., Luchangco, V., Moir, M.: Obstruction-Free Synchronization: Double-Ended Queues as an Example. In: ICDCS, Washington, DC, USA, IEEE Computer Society (2003) 522
- 14. Oprea, A., Reiter, M.K.: On Consistency of Encrypted Files. In: DISC. (2006) 254–268
- Cachin, C., Keidar, I., Shraer, A.: Fork Sequential Consistency is Blocking. Inf. Process. Lett. 109(7) (2009) 360–364
- Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and Query-Abortable Objects and Their Efficient Implementation. In: PODC: Principles of distributed computing, New York, NY, USA, ACM (2007) 23–32
- 17. Cachin, C., Keidar, I., Shraer, A.: Fail-Aware Untrusted Storage. In: DSN. (2009)
- Li, J., Mazières, D.: Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant Systems. In: NSDI. (2007)
- Aguilera, M.K., Toueg, S.: Timeliness-Based Wait-Freedom: A Gracefully Degrading Progress Condition. In: PODC '08: Proceedings of the twenty-seventh ACM symposium on Principles of distributed computing, New York, NY, USA, ACM (2008) 305–314
- Jayanti, P., Chandra, T.D., Toueg, S.: Fault-tolerant Wait-free Shared Objects. J. ACM 45(3) (1998) 451–500
- Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults. J. ACM 27(2) (1980) 228–234
- 22. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with Reads and Writes in the Absence of Step Contention. In: DISC. (2005) 122–136

A Correctness of the Linear and Concur Protocol

A.1 LINEAR Algorithm Proof

We first define the type *operation*, as used in the LINEAR protocol in Algorithm 2 and 4.

Definition 5 (LINEAR Operation) An operation identifier (operation id) is a 4-tuple (*client_id*, *op_cnt*, *type*, *reg*), where *client_id*, *op_cnt*, and *reg* are integers and where *type* is element of the set {READ, WRITE}.

An operation is a 4-tuple (id, value, tsv, sig), where id is an operation id, value is from set Value, tsv is a vector of size n of integers, and sig is a signature.

We define a partial order \leq on timestamp vectors and on operations. Note, that we regard only such operations *op* after the corresponding timestamp vector entry *op.tsv* has been assigned in line 2.12.

Definition 6 (Order Relation) For two timestamp vectors tsv and tsv' holds $tsv \leq tsv'$ if and only if

 $\forall i : tsv[i] \le tsv'[i].$

It holds tsv = tsv' if and only if tsv and tsv' are the same timestamp vectors. For two operations op and op' holds $op \le op'$ if and only if

 $op.tsv \le op'.tsv.$

It holds op = op' if and only if op and op' are the same operations.

It is easy to see that \leq relation on operations (timestamp vectors) is *tran*sitive. As relation \leq is a partial order on operations (timestamp vectors), we define a notion of when two operation (timestamp vectors) cannot be ordered by \leq .

Definition 7 (Comparable) For two timestamp vectors tsv and tsv' holds tsv and tsv' are *comparable* if and only if

$$tsv \le tsv' \lor tsv' \le tsv.$$

Otherwise, they are *incomparable*.

For two operations op and op' holds op and op' are *comparable* if and only if

op.tsv and op'.tsv are comparable.

Otherwise, they are *incomparable*. We also call two incomparable operations *forked*.

The next Lemma shows that \leq relation on LINEAR operations does not violate the real-time order of operations.

Lemma 8 If $op \leq op'$ then op' does not precede op.

Proof. Let op and op' be two operations of client C_i and C_j and let us assume by contradiction that op' precedes op and $op \leq op'$. During op, client C_i updates the *i*th entry in the timestamp vector (line 2.12). As op' precedes op and as the server cannot forge signatures (line 2.14), at the point in time when C_j received the SUBMIT_R message during op', there exists no operation op'' such that $op''.tsv[i] \geq op.tsv[i]$. Thus, we have that op.tsv[i] > op'.tsv[i]. However, this contradicts the assumption that $op \leq op'$.

The following two Lemmas show that operations which causally influence each other are ordered by \leq such that the causal order is respected. The operations of one client causally influence each other (Lemma 9) as well as a write operation and an operation which reads the written value (Lemma 10).

Lemma 9 All operations of the same client are totally ordered by \leq relation on operations.

Proof. We show that operation op of client C_i is greater than its previous completed operation op_{comp} . Note, that by line 2.18 $op_{comp}.tsv = tsv_{comp}$. Let lbe operation lso as received in the SUBMIT_R message by C_i during operation op (line 2.6). To pass the check in line 2.8, l must be greater or equal in all entries $\neq i$ of the timestamp vector than op_{comp} . By line 2.11 we have that $op.tsv[k] \geq op_{comp}.tsv[k]$ for all $k \neq i$. In line 2.12 the *i*th entry of the timestamp vector is updated by a larger entry, as op_cnt is incremented with every invoked operation of C_i (line 2.3), and we get that $op.tsv > op_{comp}.tsv$, implying that $op > op_{comp}$. By induction on C_i 's operations, it follows that op is greater than any operation of C_i that precedes op.

Lemma 10 If op_r is a read operation of client C_i that returns $op_w.value$ from register j, then $op_w < op_r$.

Proof. To pass the check in line 2.10, it must be that $op_w \leq lso$ and by lines 2.11 and 2.12 it holds that $lso < op_r$. Thus, if op_r returns $op_w.value$ it must be that $op_w < op_r$.

Lemma 11 shows that the sequential specification of the emulated registers is not violated by the LINEAR protocol. As long as all operations are ordered by \leq , the LINEAR protocol ensures that a read operation returns the latest written value from a register.

Lemma 11 Let op_r be a read operation of client C_i that returns $op_w.value$ from register j. If operations are totally ordered by \leq than there is no successful write operation op'_w between op_w and op_r that writes $v' \neq op_w.value$ to register j.

Proof. Note, that op'_w and op_w are both operations of client C_j and they write different values. Thus, let us assume for contradiction that such op'_w exists and we have $op_w < op'_w < op_r$. Let l be operation lso as seen by op_r (line 2.6). If $i \neq j$ the *j*th entry of l is not changed during op_r and thus $op_r.tsv[j] = l.tsv[j]$. To pass the check in line 2.10, we also have $op_w.tsv[j] = l.tsv[j]$. Moreover, since op_w and op'_w are both operations of the same client and op_w precedes op'_w , we have by line 2.3 $op'_w.tsv[j] > op_w.tsv[j]$ and thus $op_r.tsv[j] = op_w.tsv[j] < op'_w.tsv[j]$. This contradicts the assumption that $op'_w < op_r$.

If i = j then client C_i reads from its own register *i*. As op'_w precedes op_r we have that $ts_{suc} \ge op'_w.tsv[i]$ (line 2.23). To pass the check in line 2.8 we have that $ts_{suc} = op_w.tsv[i]$. This implies that $op_w.tsv[i] \ge op'_w.tsv[i]$ and contradicts the assumption that $op_w < op'_w$.

The next Lemma shows that two forked clients will never be rejoined. This ensures, that in the "local" history as observed by any client, operations are totally ordered by \leq .

Lemma 12 Suppose op_x and op_y are two incomparable operations. Then there exists no operation which is greater than both op_x and op_y .

Proof. We assume for contradiction that there exists an operation op_{join} of client C_z such that $op_{join} > op_x$ and $op_{join} > op_y$. Thus, there must be a minimal operation $op_z \leq op_{join}$ of client C_z for which $op_x \leq op_z$ and $op_y \leq op_z$ holds. Note that $op_z \neq op_x$ and $op_z \neq op_y$ because otherwise op_x and op_y would be comparable. Let l be lso, sent to client C_z during operation op_z (line 2.6). By lines 2.11 and 2.12 it holds that $l < op_z$. By the assumption that op_z is minimal, we know that l cannot be both greater than op_x and op_y . Therefore, we assume w.l.o.g. that $l \geq op_x$. This means that there exists some index k such that $op_x.tsv[k] > l.tsv[k]$. We distinguish the following two cases:

- 1. $k \neq z$. This implies, as by line 2.12 op_z updates only its own entry in the timestamp vector, that $op_z.tsv[k] = l.tsv[k] < op_x.tsv[k]$ which contradicts the assumption that $op_x < op_z$.
- 2. k = z. This means that client of op_z has updated the kth entry in its timestamp vector to some value $\geq op_x[k]$ during some operation op'_z . Thus, we have $op'_z.tsv[k] \geq op_x.tsv[k]$, implying that $op'_z.tsv[k] > l.tsv[k]$. However, to pass the check in line 2.8, it must be that $op'_z.tsv[k] = l.tsv[k]$ which is a contradiction.

Thus, the assumption $l \geq op_x$ is wrong and $l \geq op_x$ holds. The analogous arguments can be used to show that $l \geq op_y$. However, this contradicts the assumption that op_z is minimal and we are done.

The next Lemma proves the main result that the LINEAR protocol satisfies fork-linearizability according to Definition 3.

Lemma 13 The LINEAR protocol described in Algorithm 1, 2 and 4 emulates n SWMR registers on a Byzantine server satisfying the Fork-Consistency property (section 4.1).

Proof. Let σ be the sequence of events observed by the clients in the protocol. At first, apply transformation CRASHCOMPLETE and ABORTCOMPLETE in this order to σ (Definition 2). We construct the sets σ_i (for i = 1, ..., n) as required by the definition of fork-linearizability. We include in σ_i the last operation of client C_i in σ , op_i . Then, we include into σ_i all completed operations op' in σ such that $op_i \geq op'$. We now create the sequences π_i from σ_i by sorting σ_i according to \leq relation on operations. Since every operation inserted into π_i is less than or equal to op_i , according to Lemma 12 all operations in π_i are totally ordered by \leq . We now show that all requirements of fork-linearizability are satisfied (Definition 3):

Requirement 1 of fork-linearizability is preserved as the last completed operation of C_i was inserted into π_i , by Lemma 9 which shows that all operation of C_i are totally ordered by \leq , by Lemma 10, and by transitivity of \leq on operations.

As by Lemma 12 all operations in π_i are totally ordered, Lemma 8 guarantees requirement 2 of fork-linearizability.

For requirement 3 of fork-linearizability, we need to show that π_i satisfies the sequential specification for read/write registers. As all operations in π_i are totally ordered, sequential specification holds by Lemma 11.

To show requirement 4, we suppose that op was included in sequences π_i and π_j . Let op_i be the last operation of C_i in π_i . By construction of π_i , $op_i \ge op$. All operations op' s.t. $op' \le op$ were also included into π_i due to the transitivity of \le on operations. For the same reason, the same group of operations were included into π_j as well. Thus, requirement 4 of fork-linearizability holds.

Lemma 14 If the server is correct then no operation in Algorithm 2 blocks.

Proof. We have to show that no operation blocks in lines 2.7 - 2.10.

- $\operatorname{verify}(lso.sig) \wedge \operatorname{verify}(x_op.sig)$ is TRUE: As clients are non-malicious, all signatures are correct. Thus, the protocol does not block in line 2.7.
- Assume by contradiction that $\exists k : tsv_{comp}[k] > lso.tsv[k]$: Let op_{comp} be the last completed operation that updated tsv_{comp} in line 2.18. As the server is correct it returns only successful operations, so particularly operation lso is successful. By line 4.12 and 4.13 whenever some operation successfully completes, lso is also updated. Thus, as lso is monotonically increasing (Lemma 12 and Lemma 8), $\forall k : op_{comp}.tsv[k] \neq lso.tsv[k]$, which is a contradiction. Assume by contradiction that $ts_{suc} \neq lso.tsv[i]$: Let op_{suc} be the last successful operation that updated ts_{suc} . By reasoning above, whenever some register at the server is updated, lso is also updated. This implies that $lso.tsv[i] \neq op_{suc}.tsv[i]$. Therefore, it must be that $lso.tsv[i] > op_{suc}.tsv[i]$. Entry lso.tsv[i] is only updated when an operation of C_i later than op_{suc} successfully completes. However, in this case ts_{suc} is also updated to the same value and we have $lso.tsv[i] = ts_{suc}$, a contradiction. Thus, the protocol does not block in line 2.8.
- $-x_{op.id.client} = r$ is TRUE: As the server is correct it returns x_{op} from the correct register. Thus the protocol does not block in line 2.9.
- Assume by contradiction that $x_{-op} \not\leq lso$: As the server is correct it returns only successful operations. Thus, both x_{-op} and lso are successful. This implies that x_{-op} and lso can be ordered by \leq . By line 4.12 and 4.13 whenever some register at the server is updated, lso is also updated. Thus, as lso is

monotonically increasing, $x_op \neq lso$. Therefore, $x_op \leq lso$ which is a contradiction.

Assume by contradiction that $lso.tsv[r] \neq x_op.tsv[r]$: By the item above, whenever some register at the server is updated, lso is also updated. This implies that $lso.tsv[r] \neq x_op.tsv[r]$. Therefore, it must be that $lso.tsv[r] > x_op.tsv[r]$. Entry lso.tsv[r] is only updated when an operation of C_r later than x_op successfully completes. However, in this case $x_op.tsv[r]$ is also updated to the same value and we have $lso.tsv[r] = x_op.tsv[r]$, a contradiction.

Thus, the protocol does not block in line 2.10

Hence, no operation blocks in lines 2.7 - 2.10.

Lemma 15 With a correct server, an operation *op* of a client aborts only if the server receives a SUBMIT message from another client after the SUBMIT and before the COMMIT message corresponding to *op*.

Proof. If *op* aborts then the server has received the COMMIT message corresponding to *op*. As the server is correct and no SUBMIT message of another operation is received after the SUBMIT and before the COMMIT message of *op*, $op.id \notin Abrt$. By line 4.12 and 4.13, *op* is not aborted.

Finally, the following theorem proofs the correctness of the LINEAR protocol.

Theorem 16 The LINEAR protocol emulates n SWMR registers on a Byzantine server satisfying the properties Fork-Consistency, Termination and Nontriviality (section 4.1).

Proof. By Lemma 13, safety of fork-linearizability is satisfied, by Lemma 14, the protocol does not block, and by Lemma 15, no operation running in isolation is aborted when the server is correct.

A.2 CONCUR Algorithm Proof

We first define the type *operation*, as used in the CONCUR protocol in Algorithm 3 and 5.

Definition 17 (CONCUR Operation) An operation is a 4-tuple (*id*, value, tsv, sig), where *id* is an operation id according to Definition 5, value is from set Value, tsm is matrix consisting of n timestamp vectors tsm^1, \ldots, tsm^n where each timestamp vector is a vector of size n of integers, and sig is a signature.

As in section A.1 we define a partial order \leq on operations. Note, that we regard only such operations *op* after the corresponding timestamp matrix entry *op.tsm* has been assigned in line 3.15.

Definition 18 (Order Relation) For two operations op and op' holds $op \leq op'$ if and only if

$$\forall i: op.tsm^i \le op'.tsm^i$$
.

Relation \leq on timestamp vectors is defined in Definition 6. It holds op = op' if and only if op and op' are the same operations.

It is easy to see that \leq relation on operations is transitive. As relation \leq is a partial order on operations, we define a notion of when two operations cannot be ordered by \leq .

Definition 19 (Comparable) For two operations op and op' holds op and op' are *comparable* if and only if

$$op \le op' \lor op' \le op.$$

Otherwise, they are *incomparable*.

In contrast to the definitions for the LINEAR protocol in section A.1, in the CONCUR protocol clients with incomparable operations are not necessarily forked. Thus, the notion of *forking* is given in the next definition.

Definition 20 (Forked) For two operations op and op' holds op and op' are *forked* if and only if

 $\exists i: op.tsm^i \text{ and } op'.tsm^i \text{ are } incomparable.$

The next Lemma shows that \leq relation on CONCUR operations does not violate the real-time order of operations.

Lemma 21 If $op \leq op'$ then op' does not precede op.

Proof. Let op and op' be two operations of client C_i and C_j and let us assume by contradiction that op' precedes op and $op \leq op'$. During op, client C_i updates the *i*th entry in the *k*th timestamp vector of the timestamp matrix (line 3.15). As op' precedes op and as the server cannot forge signatures (line 3.17), at the point in time when C_j received the SUBMIT_R message during op' (line 3.6), there exists no operation op'' such that $op''.tsv[i] \geq op.tsv[i]$. Thus, we have that $op.tsm^k[i] > op'.tsm^k[i]$. As op and op' are comparable, this implies that $op.tsm^k > op'.tsm^k$. However, this contradicts the assumption that $op \leq op'$.

Analogously to the proof in section A.1, the following two Lemmas show that operations which causally influence each other are ordered by \leq such that the causal order is respected. The operations of one client causally influence each other (Lemma 22) as well as a write operation and an operation which reads the written value (Lemma 23).

Lemma 22 All operations of the same client are totally ordered by \leq relation on operations.

Proof. We show that operation op of client C_i is greater than its previous completed operation op_{comp} . Note, that by line 3.21 $op_{comp}.tsm = tsm_{comp}$. By line 3.13, as check in line 3.12 is passed, we have that $op.tsm^k \ge op_{comp}.tsm^k$ for all $k \ne r$. To pass the check in line 3.8, $lso.tsm^r$ is greater or equal than tsm_{comp}^r in all entries but the *i*th entry. However, in lines 3.14 and 3.15 the *i*th entry of the rth vector of the timestamp matrix is updated by a larger entry and we get that $op.tsm^r > op_{comp}.tsm^r$. Thus, we have that $op > op_{comp}$. By induction on C_i 's operations, it follows that op is greater than any operation of C_i that precedes op.

Lemma 23 If op_r is a read operation of client C_i that returns $op_w.value$ from register j, then $op_w < op_r$.

Proof. To pass the check in line 3.10, it must be that $op_w \leq lso$ and by lines 3.13 and 3.15 it holds that $lso < op_r$. Thus, if op_r returns $op_w.value$ it must be that $op_w < op_r$.

The next definition constructs a sequential permutation of the sequence of events produced by the run of the CONCUR protocol . The construction helps to simplify the proof of the main correctness proof of the CONCUR protocol.

Definition 24 (Sequential Permutation) Let σ be the sequence of events observed by the clients in the protocol. We define a *sequential permutation* π of σ by construction: At first we add all events from σ to π . Then, we apply transformations CRASHCOMPLETE and ABORTCOMPLETE (Definition 2) in this order to π . Finally, we totally order π by the following rules:

- 1. The operations are sorted by relation \leq on operations.
- 2. Yet unsorted operations are sorted according to the real-time order of their completion events in σ .

A subsequence π_i of π contains all operations *op* of client C_i , and all operations $op' \leq op$.

In contrast to the LINEAR protocol, during the CONCUR protocol even nonforked clients may produce *incomparable* operations. The next Lemma shows how the CONCUR protocol ensures the sequential specification of a read/write register and that forked operations will never be rejoined.

Lemma 25 Let op_r be a read operation of client C_i that returns $op_w.value$ from register j and op_r is contained in some π_k as defined in Definition 24. Then

- 1. op_w is in π_k , and
- 2. there is no write operation op'_w of C_j between op_w and op_r in π_k that writes $v' \neq op_w$.value to register j.

Proof. The first statement follows directly from Lemma 23, which states that $op_w < op_r$, and the construction of π_k .

For the second statement, note that op'_w and op_w are both operations of client C_j and they write different values. Thus, let us assume for contradiction that such operation op'_w exists and we have op_w precedes op'_w and op'_w precedes op_r . We first show that (A) op_r and op'_w are forked. Then we show (B) that op'_w is not in π_k .

Proof of A:

We first rule out the trivial case when i = j: If i = j then client C_i reads from its own register *i*. As op_w precedes op'_w we have that at client C_i , $ts_{suc}[i] = op'_w.tsm^i[i] > op_w.tsm^i[i]$. During op_r the check in line 3.8 is not passed as $ts_{suc}[i] \neq op_w.tsm^i[i]$ or the check in line 3.10 is not passed as $op'_w.tsm^i[i] \neq op_w.tsm^i[i]$. Hence, op_r blocks which contradicts the precondition that op_r is in π_k . Therefore, $i \neq j$.

Let l be operation lso as seen by op_r . To pass the check in line 3.10, we have $op_w.tsm^j[j] = l.tsm^j[j]$. As $i \neq j$ client C_i updates only its own entry (line 3.15), the *j*th entry of $l.tsm^j$ is not changed during op_r and thus $op_r.tsm^j[j] = l.tsm^j[j]$ (line 3.14). Moreover, since op_w and op'_w are both operations of the same client and op_w precedes op'_w we have $op'_w.tsm^j[j] > op_w.tsm^j[j]$ (lines 3.3 and 3.15) and thus

$$op_r.tsm^j[j] = op_w.tsm^j[j] < op'_w.tsm^j[j].$$

Further, during op_r the *i*th entry of the *j*th timestamp vector is updated to $op_r.tsm^j[i]$. As op'_w precedes op_r and as the server cannot forge signatures, at the point in time when C_j received the SUBMIT_R message during op'_w , there exists no operation op'' such that $op''.tsm^j[i] \ge op_r.tsm^j[i]$. Thus,

$$op'_w.tsm^j[i] < op_r.tsm^j[i]$$

implying that $op_r.tsm^j$ and $op'_w.tsm^j$ are incomparable, and thus, op_r and op'_w are forked.

Proof of B:

To show that op'_w is not included in π_k , we assume by contradiction that op'_w is element of π_k . By construction of π_k there exist minimal operations op, op' of client C_k such that $op_r \leq op$ and $op'_w \leq op'$. As any two operations of C_k are ordered we assume w.l.o.g. that $op' \geq op$ and thus $op' \geq op_r$ and $op' \geq op'_w$. Note that, by definition of \leq relation, it must hold for the timestamp vectors that $op'.tsm^j \geq op_r.tsm^j$ and $op'.tsm^j \geq op'_w.tsm^j$. By line 3.15, the *i*th entry of each timestamp vector in a timestamp matrix is only incremented by client C_i . Thus, to satisfy $op'.tsm^j[i] \geq op_r.tsm^j[i]$, there must be a sequence of operations accessing register j, starting with op_r and ending with op' such that the jth timestamp vectors are monotonically increasing.

As the *j*th entry of each timestamp vector in a timestamp matrix is only incremented by client C_j and $op_r.tsm^j[j] < op'_w.tsm^j[j]$, no operation of client C_j is in this sequence. Otherwise, for client C_j the check $(ts_{suc}[j] = lso.tsm^j[j])$ in line 3.8 would not be passed, as the *j*th entry of the *j*th timestamp vector is smaller than the corresponding entry of $ts_{suc}[j]$ after op'_w was completed. Thus, as no operation of C_j is in this sequence, all operations in this sequence have $op_r.tsm^j[j]$ as their *j*th entry in the *j*th timestamp vector. Therefore, $op'.tsm^{j}[j] = op_{r}.tsm^{j}[j] < op'_{w}.tsm^{j}[j]$ and as we have shown that $op'.tsm^{j}[i] \ge op_{r}.tsm^{j}[i] > op'_{w}.tsm^{j}[i]$, we have that timestamp vectors $op'.tsm^{j}$ and $op'_{w}.tsm^{j}$ are incomparable. This contradicts the fact that $op' \ge op'_{w}$ and thus, op'_{w} is not contained in π_{k} .

The next Lemma proves the main result that the CONCUR protocol satisfies fork-linearizability according to Definition 4.

Lemma 26 The CONCUR protocol described in Algorithm 1, 3 and 5 emulates n SWMR registers on a Byzantine server satisfying the Fork-Consistency property (section 4.1).

Proof. We show that the sequential permutation π of σ and all π_i defined by Definition 24 satisfy the properties of fork-linearizability as given in Definition 4.

We first show that π maintains real-time order of σ , i.e. if *op* precedes *op'* in σ , then *op* precedes *op'* in π . By Lemma 21, operations sorted by \leq respect real-time order of σ . By the definition of π all other operations are also ordered in real-time order.

Requirement 2.(a) of Fork-Consistency is satisfied by Lemma 22, which shows that all operations of one client are totally ordered by \leq , Lemma 23, and transitivity of \leq on operations. Requirement 2.(b) follows from Lemma 25. Requirement 2.(c) follows directly from the construction of π_i .

Lemma 27 If the server is correct, then the no operation in Algorithm 3 blocks.

Proof. We have to show that no operation blocks in lines 3.7 - 3.10.

- $\operatorname{verify}(lso.sig) \wedge \operatorname{verify}(x_op.sig)$ is TRUE: As clients are non-malicious, all signatures are correct. Thus the protocol does not block in line 3.7.
- Assume by contradiction that $\exists k : tsm_{comp}^{r}[k] > lso.tsm^{r}[k]$: Let op_{comp} be the last completed operation that updated tsm_{comp} in line 3.21. As the server is correct it returns only successfully completed operations, so, particularly operations op_{comp} and lso are successful. By line 5.12 and 5.13 whenever some operation to r takes effect, lso[r] is also updated. Thus, as lso[r] is monotonically increasing, $op_{comp}.tsm^{r} \neq lso.tsm^{r}$. Therefore, $tsm_{comp}^{r} \neq lso.tsm^{r}$ which is a contradiction.

Assume by contradiction that $ts_{suc}[r] \neq lso.tsm^r[i]$: Let op_{suc} be the successful operation accessing register r that updated $ts_{suc}[r]$. By the reasoning above, whenever register r at the server is updated, lso[r] is also updated. This implies that $lso.tsm^r[i] \neq op_{suc}.tsm^r[i]$. Therefore, it must be that $lso.tsm^r[i] > op_{suc}.tsm^r[i]$. Entry $lso.tsm^r[i]$ is only updated when an operation of C_i later than op_{suc} successfully completes. However, in this case $ts_{suc}[r]$ is also updated to the same value and we have $lso.tsm^r[i] = ts_{suc}[r]$, a contradiction.

Thus, the protocol does not block in line 3.8

 $-x_{op.id.client} = r$ is TRUE: As the server is correct it returns x_{op} from the correct register. Thus the protocol does not block in line 3.9.

- Assume by contradiction that $x_op \not\leq lso$: As the server is correct it returns only operations that successfully completed. Thus, both x_op and lso are successful. As x_op and lso both access register r, this implies that x_op and lso can be ordered by \leq . By line 5.12 and 5.13 whenever some register r at the server is updated, lso[r] is also updated. Thus, as lso[r] is monotonically increasing, $x_op \neq lso$. Therefore, $x_op \leq lso$ which is a contradiction. Assume by contradiction that $lso.tsm^r[r] \neq x_op.tsm^r[r]$: Whenever some

register at the server is updated, lso[r] is also updated. This implies that $lso.tsm^{r}[r] \not< x_op.tsm^{r}[r]$. Thus, it must be that $lso.tsm^{r}[r] > x_op.tsm^{r}[r]$. Entry $lso.tsm^{r}[r]$ is only updated when an operation of C_{r} accessing register r later than x_op is successful. However, in this case $x_op.tsm^{r}[r]$ is also updated to the same value and we have $lso.tsm^{r}[r] = x_op.tsm^{r}[r]$, a contradiction.

Thus, the protocol does not block in line 3.10

Hence, no operation blocks in lines 3.7 - 3.10.

Lemma 28 With a correct server, an operation op of a client accessing register r aborts only if the server receives a SUBMIT message from another client accessing register r after the SUBMIT and before the COMMIT message corresponding to op.

Proof. If *op* aborts then the server has received the COMMIT message corresponding to *op*. As the server is correct and no SUBMIT message of another operation accessing r is received after the SUBMIT and before the COMMIT message of *op*, $op.id \notin Abrt[r]$. By line 5.12 and 5.13, *op* is not aborted.

Finally, the following theorem proofs the correctness of the CONCUR protocol.

Theorem 29 The CONCUR protocol emulates n SWMR registers on a Byzantine server satisfying the properties Fork-Consistency, Termination and Nontriviality (section 4.1).

Proof. By Lemma 26, Safety of fork-linearizability is satisfies, by Lemma 27, the protocol does not block, and by Lemma 28, no operation accessing a register in isolation is aborted when the server is correct.