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Abstract. We address the problem of emulating a shared read/write
memory in a message passing system using a storage server prone to
Byzantine failures. Although cryptography can be used to ensure con-
fidentiality and integrity of the data, nothing can prevent a malicious
server from returning obsolete data. Fork-linearizability [1] guarantees
that if a malicious server hides an update of some client from another
client, then these two clients will never see each others’ updates again.
Fork-linearizability is arguably the strongest consistency property at-
tainable in the presence of a malicious server. Recent work [2] has shown
that there is no fork-linearizable shared memory emulation that supports
wait-free operations. On the positive side, it has been shown that lock-

based emulations exist [1,2]. Lock-based protocols are fragile because they
are blocking if clients may crash. In this paper we present for the first
time lock-free emulations of fork-linearizable shared memory. We have
developed two protocols, Linear and Concur. With a correct server,
both protocols guarantee linearizability and that every operation suc-
cessfully completes in the absence of step contention, while interfering
operations terminate by aborting. The Concur algorithm additionally
ensures that concurrent operations invoked on different registers com-
plete successfully.

Keywords: Fork-linearizability, abortable objects, lock-freedom, shared mem-
ory, online collaboration

1 Introduction

Fast broadband access to the Internet allows users to benefit from online services
such as storing their data remotely and sharing it with other users. Examples
for such services, also known as storage or computing “clouds” are Amazon S3,
Nirvanix CloudNAS, and Microsoft SkyDrive [3]. These services offer full data
administration such that a user does not need to care for backups or server
maintenance and the data is available on demand. Such an infrastructure makes
online collaboration (multiple users working on the same logical data) based on
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shared storage very attractive. Examples of existing solutions for online collab-
oration are the well-known revision control systems like CVS [4] and SVN [5],
the storage management system WebDAV [6], upcoming Web 2.0 applications
[7] like Google docs [8], and a large number of distributed file systems [9].

Online collaboration usually assumes that the participating clients trust each
other — otherwise there exists no basis for reasonable communication. However,
when the shared storage is provided by a third party, clients may not fully trust
the service, e.g. it can corrupt or leak sensitive data. Cryptographic techniques
such as hash functions, message authentication codes (MACs) and signatures
can be used to prevent unauthorized access to data (confidentiality) and un-
detectable corruption of the data (integrity). Progress and consistency cannot
always be guaranteed when the storage service1 is untrusted. A malicious server
may simply refuse to process client requests and it can violate linearizability
by omitting a recent update of one client and presenting an outdated value to
another client. This split brain attack is called forking and cannot be prevented.
However, once a forking attack is mounted, it can be easily detected using a
fork-linearizable storage protocol. Fork-linearizability [1] ensures that once two
clients are forked, they never see each others’ updates after that without reveal-
ing the server as faulty. Without fork-consistency, a malicious server is able to
present data updates to clients in such a way that no client can say whether the
set of updates of other clients it sees is complete or not, nor can such malicious
behavior be easily detected, making reliable collaboration impossible. Once such
a partitioning occurs, the clients stop hearing from each other. A client that has
not seen updates from another client for a while can use out-of-band communi-
cation (as e.g. phone or e-mail) to find out if the server is misbehaving.

Recent work [2] has shown that even if the server behaves correctly, clients
cannot complete their operations independently from each other because this
introduces a vulnerability that can be exploited by a Byzantine server to violate
fork-linearizability. This means that in an asynchronous system there is no wait-
free [10] emulation of fork-linearizable storage on a Byzantine server. On the
positive side, the SUNDR [1] protocol and the concurrent protocol by Cachin et
al. [2] show the existence of fork-linearizable Byzantine emulations using locks.
However, lock-based protocols are problematic as they can block in the presence
of faulty clients that crash while holding the lock.

Paper Contributions In this paper we present two lock-free emulations of fork-
linearizable shared memory on an untrusted server. In runs in which the server
behaves correctly, our proposed protocols Linear and Concur ensure lineariz-
ability [11], and that each operation executed in the absence of concurrency suc-
cessfully completes. Under concurrency, operations may complete by aborting.
Both protocols emulate a shared memory consisting of n single-writer multiple-
reader (SWMR) registers, one for each of the n clients, where register i is up-
dated only by client Ci and may be read by all clients. While both protocols
address lock-free fork-linearizability, they solve two distinct issues. The Lin-

1 We will use the terms storage service, storage server, and server interchangeably.



ear protocol, which is the first lock-free fork-linearizable implementation at all,
offers a communication complexity of O(n). The Concur protocol improves
on the handling of concurrent operations such that overlapping operations ac-
cessing different registers are not perceived as concurrent, and therefore they
are not aborted. However, it has a communication complexity of O(n2). Both
protocols allow concurrent operations to abort in order to circumvent the im-
possibility result by Cachin et al. [2]. The necessary condition for aborting is
step contention [12], and thus, pending operations of crashed clients never cause
other operations to abort. As a final contribution, note that the existence of
abortable fork-linearizable storage implies the existence of obstruction-free [13]
fork-linearizable storage.

We now give a rough intuition of why aborting helps to circumvent the given
impossibility of wait-free fork-linearizability. With both our protocols, if mul-
tiple operations compete for the same register, then there is only one winner
and all other operations are aborted. On a correct server, this strategy ensures
that all successful operations applied to the same register access the register
sequentially. Operations have timestamps attached to them and the sequential
execution establishes a total order on operations and the corresponding times-
tamps. The algorithm ensures that a forking attack breaks the total order on
timestamps. If a malicious server does not present the most recent update to
a read operation, then the timestamps of the omitted write operation and that
of the read operation become incomparable and the two clients are forked. The
algorithm guarantees that also future operations of those two clients cannot be
ordered and thus they remain forked forever.

2 Related Work

Mazières and Shasha [1] have introduced the notion of fork-linearizability and
they have implemented the first fork-linearizable multi-user network file system
SUNDR. The SUNDR protocol may block in case a client crashes even when
the storage server is correct. Cachin et al. [2] implements a more efficient fork-
linearizable storage protocol based on SUNDR which reduces communication
complexity from O(n2) to O(n). The presented protocols are blocking and thus
they have the same fundamental drawback as SUNDR. The authors [2] also
prove that there is no wait-free emulation of fork-linearizable storage. They do
so by exhibiting a run with concurrent operations where some client has to wait
for another client to complete. Oprea and Reiter [14] define the weaker notion
of fork-sequential consistency. Intuitively the difference to fork-linearizability is
that fork-sequential consistency does not necessarily preserve the real-time or-
der of operations from different clients. In a recent work, Cachin et al. [15] show
that there is no wait-free emulation of fork-sequential consistent storage on a
Byzantine server. It is important to note that these impossibility results do not
rule out the existence of emulations of fork-linearizable storage with abortable
operations [16] or weaker liveness guarantees such as obstruction-freedom [13].
Cachin et al. [17] presents the storage service FAUST which wait-free emulates a



shared memory with a new consistency semantics called weak fork-linearizability.
The notion of weak fork-linearizability weakens fork-linearizability in two fun-
damental ways. After being forked, two clients may see each others’ updates
once (at-most-on-join property) and secondly, the real-time order among the
operations which are the last of each client is not ensured.

Li and Mazières [18] study systems where storage is implemented from 3f +1
server replicas and more than f replicas are Byzantine faulty. They present a
storage protocol which ensures fork* consistency. Similar to weak fork-lineariza-
bility, fork* consistency allows that two forked clients may be joined at most
once (at-most-one-join property).

The notion of abortable objects has been introduced by Aguilera et al. [16].
The paper shows the existence of a universal abortable object construction from
abortable registers. It is the first construction of an obstruction-free universal
type from base objects weaker than registers. In a follow-up paper [19] it has been
shown that in a partially synchronous system, abortable objects can be boosted
to wait-free objects. This makes abortable objects, including our abortable fork-
linearizable read/write emulation very attractive.

Summing up, to date there is no lock-free emulation of fork-linearizable stor-
age even though lock-free solutions can be made practically wait-free using boost-
ing techniques as described by Aguilera et al. [19].

3 System Model and Definitions

Similar to the models used in recent work on fork-linearizability [2],[1], we con-
sider a distributed system consisting of a single server S and n clients C1, . . . , Cn.
The clients may fail by crashing but they never deviate from the protocol. The
server may be faulty and deviate arbitrarily from its protocol exhibiting non-
responsive-arbitrary faults [20] (Byzantine [21]). The clients communicate with
the server by sending messages over reliable channels directly to the server, form-
ing an asynchronous network. The shared functionality provided by the server
is a read/write register. A read/write register provides operations by which the
clients can access the register. An operation is defined by two events, an invoca-
tion event and a response event. To represent an abort of execution, there are
two types of response events: abort and ok events respectively. An additional
event type constitute crash events representing the act of a client failing. We call
operation op complete, if there exists a matching response event to the invoca-
tion event of op, else op is denoted as incomplete. An operation is successful, iff
it is complete and the response event is an ok event. An operation is aborted, if
it is complete and the response event is an abort event. Operation op precedes
operation op′ iff op is complete before the invocation event of op′. If op precedes
op′ we denote op and op′ as sequential operations. Else, if neither operation pre-
cedes the other, then op and op′ are said to be are concurrent. An execution of
the system is defined as the sequence of events occurring at the clients.

A read/write register X[i] provides a Read and a Write operation to the
clients. The response event to a client’s operation is either ok or abort. Client



Ci may use the Write operation to store a value v from domain Value in register
X[i], denoted as Write(i, v). If the response to a Read of register X[i] is ok, then
a value v is returned, denoted as Read(i) → v. The server implements n single-
writer multiple-reader (SWMR) registers X[1 . . . n] where each client Ci writes
only to X[i] and may read from all other registers. The sequential specification of
a register requires that if a Read operation returns a value, it returns the value
written by the last preceding Write operation.

We assume that each client interacts sequentially with the read/write regis-
ter, i.e. a client invokes a new operation only after the previous operation has
completed.

Further we assume that clients have access to a digital signature scheme used
by each client to sign its messages such that any other client can determine the
authenticity of a message by verifying the corresponding signature. Further, the
Byzantine server is not able to forge the signatures.

The consistency condition for the read/write register is defined in terms of
the sequence σ of events the shared register exhibits in an execution as observed
by the clients. Such a sequence, also called history, contains invocation, response,
and crash events. To ease the definition of consistency conditions and the reason-
ing about correctness, we define two transformations to derive simpler histories
from more complicated ones, while maintaining plausibility of execution. Intu-
itively, the transformations remove all operations from a history that do not take
effect.

Definition 1 An operation op of client takes effect if and only if

1. op is successful OR

2. op is a Write operation and
there exists a Read operation that returns the value written by op.

We now define the two transformations CrashComplete and AbortCom-

plete.

Definition 2 The transformations CrashComplete and AbortComplete

take a sequence of events σ as input and return a sequence of events σ′ as
output.

– CrashComplete: We define σ′ returned by CrashComplete by construc-
tion: At first we add all events from σ to σ′. Then, we remove the invocation
events of incomplete operations that did not take effect and the correspond-
ing crash event if one exists2 from σ′. Next, we add a matching ok event to
each remaining incomplete operation and remove all remaining crash events
in σ′.

– AbortComplete: We define σ′ returned by AbortComplete by construc-
tion: At first we add all events from σ to σ′. Then, we remove all events of
aborted operations in σ′ that did not take effect. Next, we replace all re-
maining abort events in σ with matching ok events.

2 Note, that the last operation of each client in σ might be incomplete even if the
client did not crash.



Variables used by Algorithm 2 and 3:

sig signature /* signature /*

abort boolean /* flags if operation is aborted /*

valuesuc value /* written value of last successful write /*

retval value /* return value of the read operation /*

Variables used by Algorithm 2:

op cnt integer /* operation counter /*

op, x op, lso operation with fields id = (client id, op cnt, type, reg), value, tsv, sig

/* operation structure /*

tsvcomp[1..n] vector of integers /* ts vector of last completed operation /*

tssuc integer /* timestamp of last successful operation /*

Variables used by Algorithm 3:

op cnt[1..n] array of integer /* operation counter /*

op, x op, lso operation with fields id = (client id, op cnt, type, reg), value, tsm, sig

/* operation structure /*

tsm1..n

comp[1..n] timestamp matrix of integers /* ts matrix of last completed

operation /*

tssuc[1..n] vector of integers /* timestamps of last successful operations /*

Fig. 1. Variables for Algorithms 2 and 3

Transformation CrashComplete removes incomplete operations that did
not take effect from σ. This is reasonable as such events do not influence the exe-
cution. Instead of removing them, such events could also be moved to the end of
sequence σ. The same argument applies to aborted operations that do not take
effect which are removed by transformation AbortComplete. By first applying
transformation CrashComplete and then transformation AbortComplete

to sequence σ, we have transformed σ into a sequence of events containing only
successful operations. On the transformed sequence we give two equivalent def-
initions of fork-linearizability taken from recent work of Cachin et al. [2].

Definition 3 (Fork-Linearizability) A sequence of events σ observed by the
clients is called fork-linearizable with respect to a functionality F if and only if
for each client Ci, there exists a subsequence σi of σ consisting only of completed
operations and a sequential permutation πi of σi such that:

1. All completed operations in σ occurring3 at client Ci are contained in σi;
and

2. πi preserves the real-time order of σi; and
3. the operations of πi satisfy the sequential specification of F ; and
4. for every op ∈ πi ∩ πj , the sequence of events that precede op in πi is the

same as the sequence of events that precede op in πj .

3 All successful operations of client Ci occur at client Ci; together with condition
3. this further includes all operations on which an operation of client Ci causally
depends, i.e. operations that have written a value client Ci reads.



Definition 4 (Global Fork-Linearizability) A sequence of events σ obser-
ved by the clients is called fork linearizable with respect to a functionality F if
and only if there exists a sequential permutation π of σ such that:

1. π preserves the real-time order of σ; and
2. for each client Ci there exists a subsequence πi of π such that:

(a) events in π occurring at client Ci are contained in πi; and
(b) the operations of πi satisfy the sequential specification of F ; and
(c) for every op ∈ πi ∩πj , the sequence of events that precede op in πi is the

same as the sequence of events that precede op in πj .

Using two distinct but equivalent definitions of fork-linearizability simplifies
the correctness proof of protocol Linear (by using Definition 3) and of protocol
Concur (by using Definition 4). The notion of fork-linearizability and global
fork-linearizability has shown to be equivalent [2].

4 The Protocols

In this section we present two lock-free protocols Linear and Concur that
emulate a fork-linearizable shared memory on a Byzantine server. The Linear

protocol is based on vectors of timestamps (described later in section 4.2) re-
sulting in a communication complexity of O(n). The Linear protocol serializes
all operations, and therefore it aborts concurrent operations even if they are
applied to distinct registers. The Concur protocol (introduced later in section
4.3) allows for concurrent operations if they are applied to distinct registers and
only operations on the same register are serialized. To achieve this, timestamp
matrices are used leading to a communication complexity of O(n2).

4.1 Protocol Properties

As mentioned above, Linear and Concur introduced emulate the shared func-
tionality of a read/write register among a collection of clients and a (possibly)
Byzantine server S. The Linear (Concur) protocol consists of two algorithms,
run by the clients and the server respectively. If the server is faulty, it may
refuse to respond to client requests or return (detectably) corrupted data such
that liveness of the emulated functionality is violated. A malicious server may
also mount a forking attack and partition clients. However, if the server behaves
correctly, we require that the emulation does not block and clients are not forked.

To formalize the desired properties of the Linear and Concur protocol,
we redefine the notion of sequential and concurrent operations under step con-
tention [22] when the server is correct. We say that two operations op and op′

are sequential under step contention if op′ does not perform steps at the server
S after op performed its first step and before op performed its last step at server
S. Otherwise, op and op′ are concurrent under step contention. The Linear and
Concur protocol satisfy Fork-consistency and two liveness properties Nontriv-
iality and Termination:



Algorithm 1: Read / Write Operation of Client i

Read(j) do

rw operation(read,⊥, j)
if abort then return abort

return retval

Write(v) do

rw operation(write, v, i)
if abort then return abort

return ok

Fork-consistency: Every execution of the Linear and Concur protocols
satisfies fork-linearizability with respect to a shared read/write register em-
ulated on a Byzantine server S. If S is correct, then every execution is
complete and has a linearizable history.

Nontriviality: When the server is correct, in an execution of the Linear (resp.
Concur) protocol every operation that returns abort is concurrent under
step contention with another operation (resp. with another operation on the
same register).

Termination: When the server is correct and σ is the sequence of events
exhibited by an execution of the Linear or Concur protocol, then after
applying transformation CrashComplete to σ, every operation in σ is
complete.

4.2 The LINEAR Protocol

The Linear protocol is based on two main ideas. The first idea is that when
two or more operations access the registers concurrently, all but one are aborted.
In the protocol, operations need two rounds of communication with the server,
and an operation op is aborted if a first round message of another operation
arrives at the server between the points in time when the first round message
and the second round message of op is received by the server. Hence, among
the concurrent operations, the Linear protocol does not abort the “newest”
operation. This scheme ensures that a pending operation of a crashed client
does not interfere with other operations. Observe that using this strategy of
aborting, successful operations execute in isolation and therefore accesses to the
shared memory are serialized.

As a second idea, the Linear protocol assigns vector timestamps to opera-
tions such that a partial order ≤ on operations can be defined based on these
timestamp vectors. The basic principle is that a client reads the most recent
timestamp vector from the server during the first round, increments its own en-
try and writes the updated timestamp vector back to the server. Since successful
operations run in isolation, the corresponding timestamp vectors are totally or-
dered, as no two successful operations read the same timestamp vector during
the first round. Clearly, a Byzantine server may fork two clients, but then there
are operations of these two clients op and op′ with incomparable timestamp vec-
tors. By the requirement of fork-linearizability, these two clients must not see
any later updates of each other. For this purpose, the protocol ensures that the



Algorithm 2: Linear Protocol, Algo-
rithm of Client i

rw operation(type, value, r) do2.1

abort← false2.2

op cnt← op cnt + 12.3

op.id← (i, op cnt, type, r)2.4

send 〈submit, op.id〉 to server2.5

wait for message 〈submit r, x op, lso〉2.6

if not2.7

verify(lso.sig) ∧ verify(x op.sig) then

halt

if not2.8

∀k 6= i : tsvcomp[k] ≤ lso.tsv[k] ∧

tssuc = lso.tsv[i] then halt

if not x op.id.client id = r then halt2.9

if not x op ≤ lso ∧2.10

lso.tsv[r] = x op.tsv[r]
then halt

op.tsv ← lso.tsv2.11

op.tsv[i]← op cnt2.12

if type = write then op.value← value2.13

sig ← sign(op.id||op.value||op.tsv)2.14

op.sig ← sig2.15

send 〈commit, op〉 to server2.16

wait for message 〈commit r, ret type〉2.17

tsvcomp ← op.tsv2.18

if ret type = abort then2.19

op.value← valuesuc2.20

abort← true2.21

else2.22

tssuc ← op cnt2.23

valuesuc ← op.value2.24

if type = read then2.25

retval← x op.value

Algorithm 3: Concur Protocol, Algo-
rithm of Client i

rw operation(type, value, r) do3.1

abort← false3.2

op cnt[r]← op cnt[r] + 13.3

op.id← (i, op cnt[r], type, r)3.4

send 〈submit, op.id〉 to server3.5

wait for message 〈submit r, x op, lso〉3.6

if not3.7

verify(lso.sig) ∧ verify(x op.sig) then

halt

if not3.8

∀k 6= i : tsmr

comp[k] ≤ lso.tsmr[k] ∧

tssuc[r] = lso.tsmr[i] then halt

if not x op.id.client id = r then halt3.9

if not x op ≤ lso ∧3.10

lso.tsmr[r] = x op.tsmr[r]
then halt

forall k = 1..n, k 6= r do3.11

if not tsmk

comp, lso.tsmk are comp-3.12

arable then halt

op.tsmk ← max{tsmk

comp, lso.tsmk}3.13

op.tsmr ← lso.tsmr
3.14

op.tsmr[i]← op cnt[r]3.15

if type = write then op.value← value3.16

sig ← sign(op.id||op.value||op.tsm)3.17

op.sig ← sig3.18

send 〈commit, op〉 to server3.19

wait for message 〈commit r, ret type〉3.20

tsmcomp ← op.tsm3.21

if ret type = abort then3.22

op.value← valuesuc3.23

abort← true3.24

else3.25

tssuc[r]← op cnt[r]3.26

valuesuc ← op.value3.27

if type = read then3.28

retval← x op.value

two clients remain forked by preventing any client from committing an operation
op′′ which is both greater than op and op′.

Description of the LINEAR Protocol The shared memory emulated by the
Linear protocol consists of n SWMR registers X[1], . . . , X[n] such that client
Ci may write a value from set Value only to register X[i] and may read from any
register. The detailed pseudo-code of the Linear protocol appears in Algorithm
1, 2 and 4 and the variables used are described in Figure 1.

A client performs two rounds of communication with the server S for both
Read and Write operations (see Algorithm 1). This is implemented by calling
procedure rw operation (Algorithm 2) with type read or write respectively.
When executing rw operation, the client sends a submit message to the server
S announcing a read or write operation and waits for a matching response.
The server S responds with a submit r message containing information on the
current state of the server and the value to be read. In the second communication



Algorithm 4: Linear Protocol, Algo-
rithm of Server S

Variables:

Pnd set of operation ids /* pend. ops */4.1

Abrt set of operation ids /* pending ops4.2

to be aborted */

upon receiving message 〈submit, id〉 from4.3

client i do

Abrt← Pnd4.4

Pnd← Pnd ∪ {id}4.5

send 〈submit r, X[id.reg], lso〉4.6

to client i

upon receiving message 〈commit, op〉4.7

from client i do

Pnd← Pnd \ {op.id}4.8

if op.id ∈ Abrt then4.9

send 〈commit r, abort〉 to client i4.10

else4.11

X[i]← op4.12

lso← op4.13

send 〈commit r, ok〉 to client i4.14

Algorithm 5: Concur Protocol, Algo-
rithm of Server S

Variables:

Pnd[1..n] array of set of operation ids5.1

Abrt[1..n] array of set of operation ids5.2

/* pending ops to be aborted */

upon receiving message 〈submit, id〉 from5.3

client i do

Abrt[id.reg]← Pnd[id.reg]5.4

Pnd[id.reg]← Pnd[id.reg] ∪ {id}5.5

send 〈submit r, X[id.reg], lso[id.reg]〉5.6

to client i

upon receiving message 〈commit, op〉5.7

from client i do

Pnd[op.id.reg]←5.8

Pnd[op.id.reg] \ {op.id}
if op.id ∈ Abrt[op.id.reg] then5.9

send 〈commit r, abort〉 to client i5.10

else5.11

X[i]← op5.12

lso[op.id.reg]← op5.13

send 〈commit r, ok〉 to client i5.14

round, the client sends a commit message to the server and waits for a commit r

message to complete the operation. The commit r message is either of type ok

or abort indicating to the client the outcome of the operation.

Each operation op has a timestamp vector of size n assigned to it during the
protocol. The timestamp vector is part of the operation data structure and is
denoted as op.tsv. The timestamp vector is used to define a partial order ≤ on
operations. For two operations op and op′ we say that op ≤ op′ iff op.tsv[i] ≤
op′.tsv[i] for all i = 1 . . . n. Operations of the Linear protocol have the data
structure of a 4-tuple with entries id, value, tsv and sig, where sig is a signature
on the operation by the client, tsv is the timestamp vector, value is the value
to be written by the operation. Note that for simplicity of presentation, a Read
operation rewrites the value of the client’s last successful Write. The entry id is a
4-tuple (client id, op cnt, type, reg) itself, where client id equals i for Ci, op cnt

is a local timestamp of the client which is incremented during every operation,
type indicates whether the operation is a read or a write, and reg determines
the index of the register the client intends to read from. For Write operations
of client Ci, reg is always i. The server S maintains the n registers in a vector
X[1..n], where each X[i] stores the last successful operation of Ci. Further, the
server maintains an copy of the latest successful operation in variable lso.

When client Ci invokes a new operation op on register X[r], it increments
its local timestamp op cnt, sets the entries of op.id to the operation type and
register r, and sends op.id in a submit message to the server (lines 2.2–2.5).
The server labels the received operation op as pending. If the server receives the
submit message of another operation before the commit message of op, then op

is aborted. The server then responds with a submit r message containing the



last successful operation lso, and the last successful operation x op applied to
register X[r] (lines 4.4–4.6).

After receiving operations lso and x op from the server, client Ci performs a
number of consistency checks (lines 2.7–2.10). If any of the checks fails, which
implies that the server is misbehaving, then the client halts. In the first check, Ci

verifies the signatures of lso and x op. The next check is needed to determine a
consistent timestamp vector for operation op. The goal is to obtain a timestamp
vector for op which is greater than both lso’s timestamp vector and that of Ci’s
last completed operation. The timestamp vector of the latter is stored in tsvcomp

at Ci. The client checks that all but the ith entry in lso.tsv are greater or equal
than the corresponding entries in tsvcomp. Ci’s entry lso.tsv[i] must equal the
timestamp of the last successful operation stored in tssuc. Checks three and four
are needed only by Read : Ci checks that x op is indeed the content of register
X[r]. The last check verifies that lso is at least as large as x op and that lso.tsv[r]
equals x op.tsv[r].

If all checks are passed, Ci increments its own entry lso.tsv[i] and lso.tsv

becomes the timestamp vector of op. Then, Ci signs op.id, the write value and
the timestamp vector op.tsv, and sends op in a commit message to the server
(lines 2.11–2.16). The server, removes op.id from the set of pending operations
and checks if it has to be aborted. As mentioned earlier, if this is case, a submit

message of another operation was received before the commit of op and the
server replies with abort (lines 4.8–4.10). Else, op is stored in X[i] and also
stored in lso as the last successful operation and the server replies with ok (lines
4.12–4.14).

When client Ci receives the commit r message for operation op, op is com-
pleted and thus tsvcomp is updated with op.tsv. If op is successful, then addi-
tionally tssuc becomes the ith entry of op.tsv. If op is a read, then the value of
x op is returned (lines 2.18–2.25).

Correctness Arguments Instead of returning the most recent value written
to register X[j] by a write operation opw, a Byzantine server may return an
old value written by op′w. Let Ci be the client whose read operation opr reads
the stale value written by op′w. Observe that the Byzantine server returns a stale
version of lso to Ci. Let us assume that all checks in Algorithm 2 are passed, thus
Ci is unaware of the malicious behavior of the server. Note, that the jth entry in
the timestamp vector of op′w is smaller than the corresponding entry of opw, as
both are operations of client Cj whose jth entry increases with every operation.
As the check in line 2.10 is passed, the jth entry in opr’s timestamp vector is also
smaller than the one of opw. As Ci increments the ith entry in the timestamp
vector during opr but not the jth entry, opr and opw are incomparable. We argue
that in this situation, no client commits an operation which is greater than both
opw and opr. As no client other than Ci increments the ith entry in a timestamp
vector, all operation of other clients that “see” opw have a timestamp vector
whose ith entry is smaller than opr.tsv[i] and whose jth entry is larger than
opr.tsv[j]. Thus, such operations are also incomparable with opr and do not join



opw and opr. When client Ci “sees” such an operation incomparable to opr as
the latest successful operation lso, the check in line 2.8 is not passed because the
ith entry of lso is smaller than the timestamp of Ci’s last successful operation.
Hence, Ci stops the execution. Analogously, the same arguments can be applied
for client Cj and operation opw.

As all checks are passed when the server behaves correctly, it is not difficult to
see that with a correct server, all operations invoked by correct clients complete.
Also with a correct server, operations are only aborted in the specified situations.
For a detailed correctness proof we refer to appendix A.1.

4.3 The CONCUR Protocol

The Concur protocol differs from the Linear protocol in the way how con-
current access to the server is handled. In contrast to the Linear protocol, in
the Concur protocol concurrent operations that access different registers at the
server are not aborted. However, the same aborting scheme as in the Linear

protocol is used in the Concur protocol on a register basis in order to serialize
all accesses to the same register. This means, that a correct server aborts opera-
tion op accessing register i if and only if a submit message of another operation
accessing register i is received while op is pending.

To deal with concurrent operations, in the Concur protocol, instead of one
timestamp vector, each operation is assigned n timestamp vectors, each corre-
sponding to one register. Such n timestamp vectors form the timestamp matrix
of an operation. The basic idea is that when a client accesses register j then
the client updates its own entry in the jth timestamp vector of the timestamp
matrix. It is important to note that even with a correct server, the Concur

protocol allows that two clients with concurrent operations may read the same
timestamp matrix from the server and update different timestamp vectors such
that the corresponding operations become incomparable. However, the Concur

protocol ensures that (1) operations of the same client are totally ordered by ≤
and (2) operations accessing the same register at the server are totally ordered
by ≤. This is sufficient to show that for any operation op, all operations op

causally depends on, are ordered before op by ≤. Further, the Concur protocol
ensures that two forked operations — i.e. for some i, the ith timestamp vectors
in the timestamp matrices of the two operations are incomparable — will never
be rejoined by another operation.

Description of the CONCUR Protocol The Concur protocol has the same
message pattern as the Linear protocol and provides the same interface to the
clients (Algorithm 1). The Concur protocol uses a different implementation of
procedure rw operation as described in Algorithm 3, Figure 1, and Algorithm
5. As the Concur protocol follows the structure of the implementation of the
Linear protocol, in the following we highlight only the differences between the
two protocols. The operation data structure differs from the Linear protocol
only to the fact that the timestamp vector tsv is replaced by a timestamp matrix
tsm (Figure 1).



When client Ci invokes a new operation op on register r, it generates a
new operation id which it sends to the server in a submit message (lines 3.2–
3.5). One difference is that Ci maintains a separate operation counter for each
register op cnt[1..n]. The server replies with operations lso and x op contained in
a submit r message. Here, x op is the last successful operation stored in register
r, and lso is the last successful operation that accessed register r. Note, that lso
may not be stored in register r. The server maintains information on pending
operations for each register separately (lines 5.4–5.6).

The first and the third check are identical to the Linear protocol. The second
check on operations lso and x op performed by the client corresponds to the
second check in the Linear protocol. As Concur operations hold a timestamp
matrix, the check is performed on the rth timestamp vectors of the timestamp
matrices of lso and x op. The goal is to obtain a timestamp matrix that makes op

greater than the last completed operation of Ci and the last successful operation
accessing register r, stored in lso. Like in the Linear protocol, the last check
ensures that lso is greater than x op and, unlike Linear, that the rth entries in
the rth timestamp vector of the timestamp matrices of lso and x op are equal.
This particular entry is the one which has been updated during x op (lines 3.7–
3.10).

To determine the timestamp matrix for op, client Ci selects the rth timestamp
vector from lso as rth timestamp vector of op and for all other indices it takes
the maximum timestamp vector from lso and Ci’s last completed operation.
Finally, client Ci increments its own entry in the rth timestamp vector using
op cnt[r] (lines 3.12–3.15). The remainder of the protocol is analogous to the
Linear protocol.

Correctness Arguments First, we show that all completed operations of client
Ci are totally ordered by ≤. This is reasonable as Ci cannot know if an aborted
operation was actually aborted by the malicious server. To achieve this, as the
timestamp matrix of a new operation op of Ci depends on operation lso received
in the submit r message, the check in line 3.8 is needed: It guarantees together
with lines 3.14–3.15 that the rth timestamp vector of lso is greater than the one
of Ci’s last completed operation stored in tsmcomp. For the remaining timestamp
vectors it holds by line 3.12–3.13, as in each case the maximal timestamp vector
among lso and tsmcomp is picked, that they are greater than the respective one
of Ci’s last completed operation. Hence, operation op is greater than the last
completed operation of Ci.

Second, we show that when Ci reads value opw.value from register j during op

then op is greater than the corresponding operation opw under ≤. Analogously,
by the check in line 3.12 and lines 3.13–3.15, it also holds that op is greater than
operation lso. As the check in line 3.10 ensures that opw is smaller or equal than
lso, by transitivity, op is greater than opw.

These two proof sketches give an intuition how the Concur protocol ensures
that all operations, op causally depends on, are ordered by ≤ before op. For a



detailed proof of the safety and liveness properties of the Concur protocol, we
refer to appendix A.2.

4.4 Complexity

In the Linear and Concur protocol all operations need two communication
rounds to complete. We argue why two rounds are necessary for Write opera-
tions: The reasoning is based on the fact that the information possibly written
by some one-round Write is independent from some operations of other clients.
Consider the following sequential run with a correct server and clients C1 and C2:
Write1(1, x), Read2(1) → x, Write1(1, y), Read2(1) → y. Note, that by the one-
round assumption, Write1(1, y) does not depend on the preceding Read2(1) → x.
Thus, a Byzantine server may “swap” the order of these two operations unno-
ticeably. Hence, we can construct a run with a Byzantine server, which is indis-
tinguishable for C2: Write1(1, x), Write1(1, y), Read2(1) → x, Read2(1) → y.
As C2’s second Read returns y, the run violates the sequential specification and
thereby also fork-linearizability. Thus, two rounds are needed for Write opera-
tions and the Write operations emulated by the Linear and Concur protocol
are optimal in this sense. We conjecture, that Read operations can be optimized
in the the Linear and Concur protocol to complete after a single round. This
would also imply that Read operations can be made wait-free.

The messages exchanged during the Linear protocol have size O(2(n + ι +
|v|+ ς)), where ι is the length of an operation id, |v| denotes the maximal length
of a value from Value and ς is the length of a signature. The message complexity
of the Concur protocol is in O(2(n2 + ι + |v| + ς)).

5 Conclusion

We have presented lock-free emulations of fork-linearizable shared memory on
a Byzantine server, Linear and Concur. The Linear protocol is based on
timestamp vectors and it has a communication complexity of O(n). It is the first
lock-free protocol that emulates fork-linearizable storage at all. The impossibility
result by Cachin et al. [2] is circumvented by aborting concurrent operations. The
Concur protocol improves on the Linear protocol in the way how concurrent
operations are handled. In the Concur protocol only concurrent operations
accessing the same register need to be aborted. To achieve this, the Concur

protocol relies on timestamp matrices and has a communication complexity of
O(n2).
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A Correctness of the LINEAR and CONCUR Protocol

A.1 LINEAR Algorithm Proof

We first define the type operation, as used in the Linear protocol in Algorithm
2 and 4.

Definition 5 (LINEAR Operation) An operation identifier (operation id) is a
4-tuple (client id, op cnt, type, reg), where client id, op cnt, and reg are integers
and where type is element of the set {read,write}.

An operation is a 4-tuple (id, value, tsv, sig), where id is an operation id, value
is from set Value, tsv is a vector of size n of integers, and sig is a signature.

We define a partial order ≤ on timestamp vectors and on operations. Note,
that we regard only such operations op after the corresponding timestamp vector
entry op.tsv has been assigned in line 2.12.

Definition 6 (Order Relation) For two timestamp vectors tsv and tsv′ holds
tsv ≤ tsv′ if and only if

∀i : tsv[i] ≤ tsv′[i].

It holds tsv = tsv′ if and only if tsv and tsv′ are the same timestamp vectors.
For two operations op and op′ holds op ≤ op′ if and only if

op.tsv ≤ op′.tsv.

It holds op = op′ if and only if op and op′ are the same operations.

It is easy to see that ≤ relation on operations (timestamp vectors) is tran-
sitive. As relation ≤ is a partial order on operations (timestamp vectors), we
define a notion of when two operation (timestamp vectors) cannot be ordered
by ≤.

Definition 7 (Comparable) For two timestamp vectors tsv and tsv′ holds tsv

and tsv′ are comparable if and only if

tsv ≤ tsv′ ∨ tsv′ ≤ tsv.

Otherwise, they are incomparable.
For two operations op and op′ holds op and op′ are comparable if and only if

op.tsv and op′.tsv are comparable.

Otherwise, they are incomparable. We also call two incomparable operations
forked.

The next Lemma shows that ≤ relation on Linear operations does not vio-
late the real-time order of operations.

Lemma 8 If op ≤ op′ then op′ does not precede op.



Proof. Let op and op′ be two operations of client Ci and Cj and let us assume
by contradiction that op′ precedes op and op ≤ op′. During op, client Ci updates
the ith entry in the timestamp vector (line 2.12). As op′ precedes op and as
the server cannot forge signatures (line 2.14), at the point in time when Cj

received the submit r message during op′, there exists no operation op′′ such
that op′′.tsv[i] ≥ op.tsv[i]. Thus, we have that op.tsv[i] > op′.tsv[i]. However,
this contradicts the assumption that op ≤ op′.

The following two Lemmas show that operations which causally influence
each other are ordered by ≤ such that the causal order is respected. The oper-
ations of one client causally influence each other (Lemma 9) as well as a write
operation and an operation which reads the written value (Lemma 10).

Lemma 9 All operations of the same client are totally ordered by ≤ relation
on operations.

Proof. We show that operation op of client Ci is greater than its previous com-
pleted operation opcomp. Note, that by line 2.18 opcomp.tsv = tsvcomp. Let l

be operation lso as received in the submit r message by Ci during operation
op (line 2.6). To pass the check in line 2.8, l must be greater or equal in all
entries 6= i of the timestamp vector than opcomp. By line 2.11 we have that
op.tsv[k] ≥ opcomp.tsv[k] for all k 6= i. In line 2.12 the ith entry of the times-
tamp vector is updated by a larger entry, as op cnt is incremented with every
invoked operation of Ci (line 2.3), and we get that op.tsv > opcomp.tsv, implying
that op > opcomp. By induction on Ci’s operations, it follows that op is greater
than any operation of Ci that precedes op.

Lemma 10 If opr is a read operation of client Ci that returns opw.value from
register j, then opw < opr.

Proof. To pass the check in line 2.10, it must be that opw ≤ lso and by lines
2.11 and 2.12 it holds that lso < opr. Thus, if opr returns opw.value it must be
that opw < opr.

Lemma 11 shows that the sequential specification of the emulated registers
is not violated by the Linear protocol. As long as all operations are ordered by
≤, the Linear protocol ensures that a read operation returns the latest written
value from a register.

Lemma 11 Let opr be a read operation of client Ci that returns opw.value from
register j. If operations are totally ordered by ≤ than there is no successful write
operation op′w between opw and opr that writes v′ 6= opw.value to register j.

Proof. Note, that op′w and opw are both operations of client Cj and they write
different values. Thus, let us assume for contradiction that such op′w exists and
we have opw < op′w < opr. Let l be operation lso as seen by opr (line 2.6). If i 6= j

the jth entry of l is not changed during opr and thus opr.tsv[j] = l.tsv[j]. To pass
the check in line 2.10, we also have opw.tsv[j] = l.tsv[j]. Moreover, since opw



and op′w are both operations of the same client and opw precedes op′w we have
by line 2.3 op′w.tsv[j] > opw.tsv[j] and thus opr.tsv[j] = opw.tsv[j] < op′w.tsv[j].
This contradicts the assumption that op′w < opr.

If i = j then client Ci reads from its own register i. As op′w precedes opr we
have that tssuc ≥ op′w.tsv[i] (line 2.23). To pass the check in line 2.8 we have
that tssuc = opw.tsv[i]. This implies that opw.tsv[i] ≥ op′w.tsv[i] and contradicts
the assumption that opw < op′w.

The next Lemma shows that two forked clients will never be rejoined. This
ensures, that in the “local” history as observed by any client, operations are
totally ordered by ≤.

Lemma 12 Suppose opx and opy are two incomparable operations. Then there
exists no operation which is greater than both opx and opy.

Proof. We assume for contradiction that there exists an operation opjoin of client
Cz such that opjoin > opx and opjoin > opy. Thus, there must be a minimal
operation opz ≤ opjoin of client Cz for which opx ≤ opz and opy ≤ opz holds.
Note that opz 6= opx and opz 6= opy because otherwise opx and opy would be
comparable. Let l be lso, sent to client Cz during operation opz (line 2.6). By
lines 2.11 and 2.12 it holds that l < opz. By the assumption that opz is minimal,
we know that l cannot be both greater than opx and opy. Therefore, we assume
w.l.o.g. that l 6≥ opx. This means that there exists some index k such that
opx.tsv[k] > l.tsv[k]. We distinguish the following two cases:

1. k 6= z. This implies, as by line 2.12 opz updates only its own entry in the
timestamp vector, that opz.tsv[k] = l.tsv[k] < opx.tsv[k] which contradicts
the assumption that opx < opz.

2. k = z. This means that client of opz has updated the kth entry in its times-
tamp vector to some value ≥ opx[k] during some operation op′z. Thus, we
have op′z.tsv[k] ≥ opx.tsv[k], implying that op′z.tsv[k] > l.tsv[k]. However,
to pass the check in line 2.8, it must be that op′z.tsv[k] = l.tsv[k] which is a
contradiction.

Thus, the assumption l 6≥ opx is wrong and l ≥ opx holds. The analogous
arguments can be used to show that l ≥ opy. However, this contradicts the
assumption that opz is minimal and we are done.

The next Lemma proves the main result that the Linear protocol satisfies
fork-linearizability according to Definition 3.

Lemma 13 The Linear protocol described in Algorithm 1, 2 and 4 emulates n

SWMR registers on a Byzantine server satisfying the Fork-Consistency property
(section 4.1).

Proof. Let σ be the sequence of events observed by the clients in the protocol.
At first, apply transformation CrashComplete and AbortComplete in this
order to σ (Definition 2). We construct the sets σi (for i = 1, . . . , n) as required



by the definition of fork-linearizability. We include in σi the last operation of
client Ci in σ, opi. Then, we include into σi all completed operations op′ in
σ such that opi ≥ op′. We now create the sequences πi from σi by sorting σi

according to ≤ relation on operations. Since every operation inserted into πi

is less than or equal to opi, according to Lemma 12 all operations in πi are
totally ordered by ≤. We now show that all requirements of fork-linearizability
are satisfied (Definition 3):

Requirement 1 of fork-linearizability is preserved as the last completed oper-
ation of Ci was inserted into πi, by Lemma 9 which shows that all operation of Ci

are totally ordered by ≤, by Lemma 10, and by transitivity of ≤ on operations.
As by Lemma 12 all operations in πi are totally ordered, Lemma 8 guarantees

requirement 2 of fork-linearizability.
For requirement 3 of fork-linearizability, we need to show that πi satisfies

the sequential specification for read/write registers. As all operations in πi are
totally ordered, sequential specification holds by Lemma 11.

To show requirement 4, we suppose that op was included in sequences πi and
πj . Let opi be the last operation of Ci in πi. By construction of πi, opi ≥ op. All
operations op′ s.t. op′ ≤ op were also included into πi due to the transitivity of ≤
on operations. For the same reason, the same group of operations were included
into πj as well. Thus, requirement 4 of fork-linearizability holds.

Lemma 14 If the server is correct then no operation in Algorithm 2 blocks.

Proof. We have to show that no operation blocks in lines 2.7 – 2.10.

– verify(lso.sig)∧verify(x op.sig) is true: As clients are non-malicious, all
signatures are correct. Thus, the protocol does not block in line 2.7.

– Assume by contradiction that ∃k : tsvcomp[k] > lso.tsv[k]: Let opcomp be the
last completed operation that updated tsvcomp in line 2.18. As the server is
correct it returns only successful operations, so particularly operation lso is
successful. By line 4.12 and 4.13 whenever some operation successfully com-
pletes, lso is also updated. Thus, as lso is monotonically increasing (Lemma
12 and Lemma 8), ∀k : opcomp.tsv[k] 6> lso.tsv[k], which is a contradiction.
Assume by contradiction that tssuc 6= lso.tsv[i]: Let opsuc be the last suc-
cessful operation that updated tssuc. By reasoning above, whenever some
register at the server is updated, lso is also updated. This implies that
lso.tsv[i] 6< opsuc.tsv[i]. Therefore, it must be that lso.tsv[i] > opsuc.tsv[i].
Entry lso.tsv[i] is only updated when an operation of Ci later than opsuc

successfully completes. However, in this case tssuc is also updated to the
same value and we have lso.tsv[i] = tssuc, a contradiction.
Thus, the protocol does not block in line 2.8.

– x op.id.client = r is true: As the server is correct it returns x op from the
correct register. Thus the protocol does not block in line 2.9.

– Assume by contradiction that x op 6≤ lso: As the server is correct it returns
only successful operations. Thus, both x op and lso are successful. This im-
plies that x op and lso can be ordered by ≤. By line 4.12 and 4.13 whenever
some register at the server is updated, lso is also updated. Thus, as lso is



monotonically increasing, x op 6> lso. Therefore, x op ≤ lso which is a con-
tradiction.

Assume by contradiction that lso.tsv[r] 6= x op.tsv[r]: By the item above,
whenever some register at the server is updated, lso is also updated. This
implies that lso.tsv[r] 6< x op.tsv[r]. Therefore, it must be that lso.tsv[r] >

x op.tsv[r]. Entry lso.tsv[r] is only updated when an operation of Cr later
than x op successfully completes. However, in this case x op.tsv[r] is also
updated to the same value and we have lso.tsv[r] = x op.tsv[r], a contradic-
tion.

Thus, the protocol does not block in line 2.10

Hence, no operation blocks in lines 2.7 – 2.10.

Lemma 15 With a correct server, an operation op of a client aborts only if
the server receives a submit message from another client after the submit and
before the commit message corresponding to op.

Proof. If op aborts then the server has received the commit message correspond-
ing to op. As the server is correct and no submit message of another operation
is received after the submit and before the commit message of op, op.id 6∈ Abrt.
By line 4.12 and 4.13, op is not aborted.

Finally, the following theorem proofs the correctness of the Linear protocol.

Theorem 16 The Linear protocol emulates n SWMR registers on a Byzantine
server satifying the properties Fork-Consistency, Termination and Nontriviality
(section 4.1).

Proof. By Lemma 13, safety of fork-linearizability is satisfied, by Lemma 14, the
protocol does not block, and by Lemma 15, no operation running in isolation is
aborted when the server is correct.

A.2 CONCUR Algorithm Proof

We first define the type operation, as used in the Concur protocol in Algorithm
3 and 5.

Definition 17 (CONCUR Operation) An operation is a 4-tuple (id, value,
tsv, sig), where id is an operation id according to Definition 5, value is from
set Value, tsm is matrix consisting of n timestamp vectors tsm1, . . . , tsmn where
each timestamp vector is a vector of size n of integers, and sig is a signature.

As in section A.1 we define a partial order ≤ on operations. Note, that we
regard only such operations op after the corresponding timestamp matrix entry
op.tsm has been assigned in line 3.15.



Definition 18 (Order Relation) For two operations op and op′ holds op ≤
op′ if and only if

∀i : op.tsmi ≤ op′.tsmi.

Relation ≤ on timestamp vectors is defined in Definition 6. It holds op = op′ if
and only if op and op′ are the same operations.

It is easy to see that ≤ relation on operations is transitive. As relation ≤ is
a partial order on operations, we define a notion of when two operations cannot
be ordered by ≤.

Definition 19 (Comparable) For two operations op and op′ holds op and op′

are comparable if and only if

op ≤ op′ ∨ op′ ≤ op.

Otherwise, they are incomparable.

In contrast to the definitions for the Linear protocol in section A.1, in
the Concur protocol clients with incomparable operations are not necessarily
forked. Thus, the notion of forking is given in the next definition.

Definition 20 (Forked) For two operations op and op′ holds op and op′ are
forked if and only if

∃i : op.tsmi and op′.tsmi are incomparable.

The next Lemma shows that ≤ relation on Concur operations does not
violate the real-time order of operations.

Lemma 21 If op ≤ op′ then op′ does not precede op.

Proof. Let op and op′ be two operations of client Ci and Cj and let us assume
by contradiction that op′ precedes op and op ≤ op′. During op, client Ci updates
the ith entry in the kth timestamp vector of the timestamp matrix (line 3.15).
As op′ precedes op and as the server cannot forge signatures (line 3.17), at the
point in time when Cj received the submit r message during op′ (line 3.6),
there exists no operation op′′ such that op′′.tsv[i] ≥ op.tsv[i]. Thus, we have
that op.tsmk[i] > op′.tsmk[i]. As op and op′ are comparable, this implies that
op.tsmk > op′.tsmk. However, this contradicts the assumption that op ≤ op′.

Analogously to the proof in section A.1, the following two Lemmas show that
operations which causally influence each other are ordered by ≤ such that the
causal order is respected. The operations of one client causally influence each
other (Lemma 22) as well as a write operation and an operation which reads the
written value (Lemma 23).

Lemma 22 All operations of the same client are totally ordered by ≤ relation
on operations.



Proof. We show that operation op of client Ci is greater than its previous com-
pleted operation opcomp. Note, that by line 3.21 opcomp.tsm = tsmcomp. By line
3.13, as check in line 3.12 is passed, we have that op.tsmk ≥ opcomp.tsm

k for all
k 6= r. To pass the check in line 3.8, lso.tsmr is greater or equal than tsmr

comp in
all entries but the ith entry. However, in lines 3.14 and 3.15 the ith entry of the
rth vector of the timestamp matrix is updated by a larger entry and we get that
op.tsmr > opcomp.tsm

r. Thus, we have that op > opcomp. By induction on Ci’s
operations, it follows that op is greater than any operation of Ci that precedes
op.

Lemma 23 If opr is a read operation of client Ci that returns opw.value from
register j, then opw < opr.

Proof. To pass the check in line 3.10, it must be that opw ≤ lso and by lines
3.13 and 3.15 it holds that lso < opr. Thus, if opr returns opw.value it must be
that opw < opr.

The next definition constructs a sequential permutation of the sequence of
events produced by the run of the Concur protocol . The construction helps to
simplify the proof of the main correctness proof of the Concur protocol.

Definition 24 (Sequential Permutation) Let σ be the sequence of events
observed by the clients in the protocol. We define a sequential permutation π

of σ by construction: At first we add all events from σ to π. Then, we apply
transformations CrashComplete and AbortComplete (Definition 2) in this
order to π. Finally, we totally order π by the following rules:

1. The operations are sorted by relation ≤ on operations.
2. Yet unsorted operations are sorted according to the real-time order of their

completion events in σ.

A subsequence πi of π contains all operations op of client Ci, and all opera-
tions op′ ≤ op.

In contrast to the Linear protocol, during the Concur protocol even non-
forked clients may produce incomparable operations. The next Lemma shows
how the Concur protocol ensures the sequential specification of a read/write
register and that forked operations will never be rejoined.

Lemma 25 Let opr be a read operation of client Ci that returns opw.value from
register j and opr is contained in some πk as defined in Definition 24. Then

1. opw is in πk, and
2. there is no write operation op′w of Cj between opw and opr in πk that writes

v′ 6= opw.value to register j.

Proof. The first statement follows directly from Lemma 23, which states that
opw < opr, and the construction of πk.



For the second statement, note that op′w and opw are both operations of
client Cj and they write different values. Thus, let us assume for contradiction
that such operation op′w exists and we have opw precedes op′w and op′w precedes
opr. We first show that (A) opr and op′w are forked. Then we show (B) that op′w
is not in πk.
Proof of A:
We first rule out the trivial case when i = j: If i = j then client Ci reads from
its own register i. As opw precedes op′w we have that at client Ci, tssuc[i] =
op′w.tsmi[i] > opw.tsmi[i]. During opr the check in line 3.8 is not passed as
tssuc[i] 6= opw.tsmi[i] or the check in line 3.10 is not passed as op′w.tsmi[i] 6=
opw.tsmi[i]. Hence, opr blocks which contradicts the precondition that opr is in
πk. Therefore, i 6= j.

Let l be operation lso as seen by opr. To pass the check in line 3.10, we have
opw.tsmj [j] = l.tsmj [j]. As i 6= j client Ci updates only its own entry (line 3.15),
the jth entry of l.tsmj is not changed during opr and thus opr.tsm

j [j] = l.tsmj [j]
(line 3.14). Moreover, since opw and op′w are both operations of the same client
and opw precedes op′w we have op′w.tsmj [j] > opw.tsmj [j] (lines 3.3 and 3.15)
and thus

opr.tsm
j [j] = opw.tsmj [j] < op′w.tsmj [j].

Further, during opr the ith entry of the jth timestamp vector is updated to
opr.tsm

j [i]. As op′w precedes opr and as the server cannot forge signatures, at
the point in time when Cj received the submit r message during op′w, there
exists no operation op′′ such that op′′.tsmj [i] ≥ opr.tsm

j [i]. Thus,

op′w.tsmj [i] < opr.tsm
j [i]

implying that opr.tsm
j and op′w.tsmj are incomparable, and thus, opr and op′w

are forked.
Proof of B:
To show that op′w is not included in πk, we assume by contradiction that op′w is
element of πk. By construction of πk there exist minimal operations op, op′ of
client Ck such that opr ≤ op and op′w ≤ op′. As any two operations of Ck are
ordered we assume w.l.o.g. that op′ ≥ op and thus op′ ≥ opr and op′ ≥ op′w.
Note that, by definition of ≤ relation, it must hold for the timestamp vectors
that op′.tsmj ≥ opr.tsm

j and op′.tsmj ≥ op′w.tsmj . By line 3.15, the ith entry of
each timestamp vector in a timestamp matrix is only incremented by client Ci.
Thus, to satisfy op′.tsmj [i] ≥ opr.tsm

j [i], there must be a sequence of operations
accessing register j, starting with opr and ending with op′ such that the jth
timestamp vectors are monotonically increasing.

As the jth entry of each timestamp vector in a timestamp matrix is only
incremented by client Cj and opr.tsm

j [j] < op′w.tsmj [j], no operation of client
Cj is in this sequence. Otherwise, for client Cj the check (tssuc[j] = lso.tsmj [j])
in line 3.8 would not be passed, as the jth entry of the jth timestamp vec-
tor is smaller than the corresponding entry of tssuc[j] after op′w was completed.
Thus, as no operation of Cj is in this sequence, all operations in this sequence
have opr.tsm

j [j] as their jth entry in the jth timestamp vector. Therefore,



op′.tsmj [j] = opr.tsm
j [j] < op′w.tsmj [j] and as we have shown that op′.tsmj [i] ≥

opr.tsm
j [i] > op′w.tsmj [i], we have that timestamp vectors op′.tsmj and op′w.tsmj

are incomparable. This contradicts the fact that op′ ≥ op′w and thus, op′w is not
contained in πk.

The next Lemma proves the main result that the Concur protocol satisfies
fork-linearizability according to Definition 4.

Lemma 26 The Concur protocol described in Algorithm 1, 3 and 5 emulates n

SWMR registers on a Byzantine server satisfying the Fork-Consistency property
(section 4.1).

Proof. We show that the sequential permutation π of σ and all πi defined by
Definition 24 satisfy the properties of fork-linearizability as given in Definition
4.

We first show that π maintains real-time order of σ, i.e. if op precedes op′

in σ, then op precedes op′ in π. By Lemma 21, operations sorted by ≤ respect
real-time order of σ. By the definition of π all other operations are also ordered
in real-time order.

Requirement 2.(a) of Fork-Consistency is satisfied by Lemma 22, which shows
that all operations of one client are totally ordered by ≤, Lemma 23, and tran-
sitivity of ≤ on operations. Requirement 2.(b) follows from Lemma 25. Require-
ment 2.(c) follows directly from the construction of πi.

Lemma 27 If the server is correct, then the no operation in Algorithm 3 blocks.

Proof. We have to show that no operation blocks in lines 3.7 – 3.10.

– verify(lso.sig)∧verify(x op.sig) is true: As clients are non-malicious, all
signatures are correct. Thus the protocol does not block in line 3.7.

– Assume by contradiction that ∃k : tsmr
comp[k] > lso.tsmr[k]: Let opcomp be

the last completed operation that updated tsmcomp in line 3.21. As the server
is correct it returns only successfully completed operations, so, particularly
operations opcomp and lso are successful. By line 5.12 and 5.13 whenever some
operation to r takes effect, lso[r] is also updated. Thus, as lso[r] is mono-
tonically increasing, opcomp.tsm

r 6> lso.tsmr. Therefore, tsmr
comp 6> lso.tsmr

which is a contradiction.
Assume by contradiction that tssuc[r] 6= lso.tsmr[i]: Let opsuc be the suc-
cessful operation accessing register r that updated tssuc[r]. By the reason-
ing above, whenever register r at the server is updated, lso[r] is also up-
dated. This implies that lso.tsmr[i] 6< opsuc.tsm

r[i]. Therefore, it must be
that lso.tsmr[i] > opsuc.tsm

r[i]. Entry lso.tsmr[i] is only updated when an
operation of Ci later than opsuc successfully completes. However, in this case
tssuc[r] is also updated to the same value and we have lso.tsmr[i] = tssuc[r],
a contradiction.
Thus, the protocol does not block in line 3.8

– x op.id.client = r is true: As the server is correct it returns x op from the
correct register. Thus the protocol does not block in line 3.9.



– Assume by contradiction that x op 6≤ lso: As the server is correct it returns
only operations that successfully completed. Thus, both x op and lso are
successful. As x op and lso both access register r, this implies that x op and
lso can be ordered by ≤. By line 5.12 and 5.13 whenever some register r at
the server is updated, lso[r] is also updated. Thus, as lso[r] is monotonically
increasing, x op 6> lso. Therefore, x op ≤ lso which is a contradiction.
Assume by contradiction that lso.tsmr[r] 6= x op.tsmr[r]: Whenever some
register at the server is updated, lso[r] is also updated. This implies that
lso.tsmr[r] 6< x op.tsmr[r]. Thus, it must be that lso.tsmr[r] > x op.tsmr[r].
Entry lso.tsmr[r] is only updated when an operation of Cr accessing reg-
ister r later than x op is successful. However, in this case x op.tsmr[r] is
also updated to the same value and we have lso.tsmr[r] = x op.tsmr[r], a
contradiction.
Thus, the protocol does not block in line 3.10

Hence, no operation blocks in lines 3.7 – 3.10.

Lemma 28 With a correct server, an operation op of a client accessing register r

aborts only if the server receives a submit message from another client accessing
register r after the submit and before the commit message corresponding to
op.

Proof. If op aborts then the server has received the commit message correspond-
ing to op. As the server is correct and no submit message of another operation
accessing r is received after the submit and before the commit message of op,
op.id 6∈ Abrt[r]. By line 5.12 and 5.13, op is not aborted.

Finally, the following theorem proofs the correctness of the Concur protocol.

Theorem 29 The Concur protocol emulates n SWMR registers on a Byzan-
tine server satisfying the properties Fork-Consistency, Termination and Nontriv-
iality (section 4.1).

Proof. By Lemma 26, Safety of fork-linearizability is satisfies, by Lemma 27, the
protocol does not block, and by Lemma 28, no operation accessing a register in
isolation is aborted when the server is correct.


