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Abstract—We study the problem of load balancing in dis-
tributed stream processing engines, which is exacerbated in the
presence of skew. We introduce PARTIAL KEY GROUPING (PKG),
a new stream partitioning scheme that adapts the classical “power
of two choices” to a distributed streaming setting by leveraging
two novel techniques: key splitting and local load estimation. In so
doing, it achieves better load balancing than key grouping while
being more scalable than shuffle grouping.

We test PKG on several large datasets, both real-world and
synthetic. Compared to standard hashing, PKG reduces the load
imbalance by up to several orders of magnitude, and often
achieves nearly-perfect load balance. This result translates into
an improvement of up to 60% in throughput and up to 45% in
latency when deployed on a real Storm cluster.

I. INTRODUCTION

Distributed stream processing engines (DSPEs) such as S4,1

Storm,2 and Samza3 have recently gained much attention ow-
ing to their ability to process huge volumes of data with very
low latency on clusters of commodity hardware. Streaming
applications are represented by directed acyclic graphs (DAG)
where vertices, called processing elements (PEs), represent
operators, and edges, called streams, represent the data flow
from one PE to the next. For scalability, streams are partitioned
into sub-streams and processed in parallel on a replica of the
PE called processing element instance (PEI).

Applications of DSPEs, especially in data mining and ma-
chine learning, typically require accumulating state across the
stream by grouping the data on common fields [1, 2]. Akin to
MapReduce, this grouping in DSPEs is usually implemented
by partitioning the stream on a key and ensuring that messages
with the same key are processed by the same PEI. This
partitioning scheme is called key grouping. Typically, it maps
keys to sub-streams by using a hash function. Hash-based
routing allows each source PEI to route each message solely
via its key, without needing to keep any state or to coordinate
among PEIs. Alas, it also results in load imbalance as it
represents a “single-choice” paradigm [3], and because it
disregards the popularity of a key, i.e., the number of messages
with the same key in the stream, as depicted in Figure 1.

1https://incubator.apache.org/s4
2https://storm.incubator.apache.org
3https://samza.incubator.apache.org
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Fig. 1: Load imbalance generated by skew in the key distri-
bution when using key grouping. The color of each message
represents its key.

Large web companies run massive deployments of DSPEs
in production. Given their scale, good utilization of the re-
sources is critical. However, the skewed distribution of many
workloads causes a few PEIs to sustain a significantly higher
load than others. This suboptimal load balancing leads to poor
resource utilization and inefficiency.

Another partitioning scheme called shuffle grouping
achieves excellent load balancing by using a round-robin
routing, i.e., by sending a message to a new PEI in cyclic
order, irrespective of its key. However, this scheme is mostly
suited for stateless computations. Shuffle grouping may require
an additional aggregation phase and more memory to express
stateful computations (Section II). Additionally, it may cause a
decrease in accuracy for data mining algorithms (Section VI).

In this work, we focus on the problem of load balancing of
stateful applications in DSPEs when the input stream follows
a skewed key distribution. In this setting, load balancing is
attained by having upstream PEIs create a balanced partition
of messages for downstream PEIs, for each edge of the DAG.
Any practical solution for this task needs to be both streaming
and distributed: the former constraint enforces the use of an
online algorithm, as the distribution of keys is not known in
advance, while the latter calls for a decentralized solution with
minimal coordination overhead in order to ensure scalability.

https://incubator.apache.org/s4
https://storm.incubator.apache.org
https://samza.incubator.apache.org


To address this problem, we leverage the “power of two
choices” [4] (PoTC), whereby the system picks the least loaded
out of two candidate PEIs for each key. However, to maintain
the semantics of key grouping while using PoTC (i.e., so that
one key is handled by a single PEI), sources would need to
track which of the two possible choices has been made for
each key. This requirement imposes a coordination overhead
every time a new key appears, so that all sources agree on the
choice. In addition, sources should then store this choice in
a routing table. Each edge in the DAG would thus require a
routing table for every source, each with one entry per key.
Given that a typical stream may contain billions of keys, this
solution is not practical.

Instead, we propose to relax the key grouping constraint
and allow each key to be handled by both candidate PEIs. We
call this technique key splitting; it allows us to apply PoTC
without the need to agree on, or keep track of, the choices
made. As shown in Section V, key splitting guarantees good
load balance even in the presence of skew.

A second issue is how to estimate the load of a downstream
PEI. Traditional work on PoTC assumes global knowledge of
the current load of each server, which is challenging in a
distributed system. Additionally, it assumes that all messages
originate from a single source, whereas messages in a DSPE
are generated in parallel by multiple sources.

In this paper we prove that, interestingly, a simple local
load estimation technique, whereby each source independently
tracks the load of downstream PEIs, performs very well in
practice. This technique gives results that are almost indistin-
guishable from those given by a global load oracle.

The combination of these two techniques (key splitting
and local load estimation) enables a new stream partitioning
scheme named PARTIAL KEY GROUPING.

In summary, we make the following contributions.
• We study the problem of load balancing in modern dis-

tributed stream processing engines.
• We show how to apply PoTC to DSPEs in a principled and

practical way, and propose two novel techniques to do so:
key splitting and local load estimation.
• We propose PARTIAL KEY GROUPING, a novel and simple

stream partitioning scheme that applies to any DSPE. When
implemented on top of Apache Storm, it requires a single
function and less than 20 lines of code.4

• We measure the impact of PKG on a real deployment on
Apache Storm. Compared to key grouping, it improves
the throughput of an example application on real-world
datasets by up to 60%, and the latency by up to 45%.

II. PRELIMINARIES AND MOTIVATION

We consider a DSPE running on a cluster of machines that
communicate by exchanging messages following the flow of
a DAG, as discussed. In this work, we focus on balancing the
data transmission along a single edge in a DAG. Load balancing
across the whole DAG is achieved by balancing along each

4Available at https://github.com/gdfm/partial-key-grouping

edge independently. Each edge represents a single stream of
data, along with its partitioning scheme. Given a stream under
consideration, let the set of upstream PEIs (sources) be S, and
the set of downstream PEIs (workers) be W , and their sizes
be |S| = S and |W| = W (see Figure 1).

The input to the engine is a sequence of messages m =
〈t, k, v〉 where t is the timestamp at which the message is
received, k ∈ K , |K| = K is the message key, and v is the
value. The messages are presented to the engine in ascending
order by timestamp.

A stream partitioning function Pt : K → N maps each key
in the key space to a natural number, at a given time t. This
number identifies the worker responsible for processing the
message. Each worker is associated to one or more keys.

We use a definition of load similar to others in the literature
(e.g., Flux [5]). At time t, the load of a worker i is the number
of messages handled by the worker up to t:

Li(t) = |{〈τ, k, v〉 : Pτ (k) = i ∧ τ ≤ t}|

In principle, depending on the application, two different
messages might impose a different load on workers. However,
in most cases these differences even out and modeling such
application-specific differences is not necessary.

We define imbalance at time t as the difference between the
maximum and the average load of the workers:

I(t) = max
i

(Li(t))− avg
i

(Li(t)), for i ∈ W

We tackle the problem of identifying a stream partitioning
function that minimizes the imbalance, while at the same time
avoiding the downsides of shuffle grouping.

A. Existing Stream Partitioning Functions

Data is sent between PEs by exchanging messages over
the network. Several primitives are offered by DSPEs for
sources to partition the stream, i.e., to route messages to
different workers. There are two main primitives of interest:
key grouping (KG) and shuffle grouping (SG).

KG ensures that messages with the same key are handled
by the same PEI (analogous to MapReduce). It is usually
implemented through hashing.

SG routes messages independently, typically in a round-
robin fashion. SG provides excellent load balance by assigning
an almost equal number of messages to each PEI. However,
no guarantee is made on the partitioning of the key space, as
each occurrence of a key can be assigned to any PEIs. SG is the
perfect choice for stateless operators. However, with stateful
operators one has to handle, store and aggregate multiple
partial results for the same key, thus incurring additional costs.

In general, when the distribution of input keys is skewed,
the number of messages that each PEI needs to handle can
vary greatly. While this problem is not present for stateless
operators, which can use SG to evenly distribute messages,
stateful operators implemented via KG suffer from load imbal-
ance. This issue generates a degradation of the service level, or
reduces the utilization of the cluster which must be provisioned
to handle the peak load of the single most loaded server.

https://github.com/gdfm/partial-key-grouping


Example. To make the discussion more concrete, we introduce
a simple application that will be our running example: stream-
ing top-k word count. This application is an adaptation of the
classical MapReduce word count to the streaming paradigm
where we want to generate a list of top-k words by frequency
at periodic intervals (e.g., each T seconds). It is also a common
application in many domains, for example to identify trending
topics in a stream of tweets.
Implementation via key grouping. Following the MapRe-
duce paradigm, the implementation of word count described
by Neumeyer et al. [6] or Noll [7] uses KG on the source
stream. The counter PE keeps a running counter for each
word. KG ensures that each word is handled by a single PEI,
which thus has the total count for the word in the stream. At
periodic intervals, the counter PEIs send their top-k counters to
a single downstream aggregator to compute the top-k words.
While this application is clearly simplistic, it models quite well
a general class of applications common in data mining and
machine learning whose goal is to create a model by tracking
aggregated statistics of the data.

Clearly KG generates load imbalance as, for instance, the
PEI associated to the key “the” will receive many more mes-
sages than the one associated with “Barcelona”. This example
captures the core of the problem we tackle: the distribution
of word frequencies follows a Zipf law where few words are
extremely common while a large majority are rare. Therefore,
an even distribution of keys such as the one generated by KG
results in an uneven distribution of messages.
Implementation via shuffle grouping. An alternative imple-
mentation uses shuffle grouping on the source stream to get
partial word counts. These counts are sent downstream to an
aggregator every T seconds via key grouping. The aggregator
simply combines the counts for each key to get the total count
and selects the top-k for the final result.

Using SG requires a slightly more complex logic but it
generates an even distribution of messages among the counter
PEIs. However, it suffers from other problems. Given that
there is no guarantee which PEI will handle a key, each PEI
potentially needs to keep a counter for every key in the stream.
Therefore, the memory usage of the application grows linearly
with the parallelism level. Hence, it is not possible to scale to
a larger workload by adding more machines: the application
is not scalable in terms of memory. Even if we resort to
approximation algorithms, in general, the error depends on the
number of aggregations performed, thus it grows linearly with
the parallelism level. We analyze this case in further detail
along with other application scenarios in Section VI.

B. Key grouping with rebalancing
One common solution for load balancing in DSPEs is

operator migration [5, 8, 9, 10, 11, 12]. Once a situation of
load imbalance is detected, the system activates a rebalancing
routine that moves part of the keys, and the state associated
with them, away from an overloaded server. While this solu-
tion is easy to understand, its application in our context is not
straightforward for several reasons.

Rebalancing requires setting a number of parameters such
as how often to check for imbalance and how often to
rebalance. These parameters are often application-specific as
they involve a trade-off between imbalance and rebalancing
cost that depends on the size of the state to migrate.

Further, implementing a rebalancing mechanism usually
requires major modifications of the DSPE at hand. This task
may be hard, and is usually seen with suspicion by the
community driving open source projects, as witnessed by the
many variants of Hadoop that were never merged back into
the main line of development [13, 14, 15].

In our context, rebalancing implies migrating keys from one
sub-stream to another. However, this migration is not directly
supported by the programming abstractions of some DSPEs.
Storm and Samza use a coarse-grained stream partitioning
paradigm. Each stream is partitioned into as many sub-streams
as the number of downstream PEIs. Key migration is not
compatible with this partitioning paradigm, as a key cannot
be uncoupled from its sub-stream. In contrast, S4 employs a
fine-grained paradigm where the stream is partitioned into one
sub-stream per key value, and there is a one-to-one mapping of
a key to a PEI. The latter paradigm easily supports migration,
as each key is processed independently.

A major problem with mapping keys to PEIs explicitly is
that the DSPE must maintain several routing tables: one for
each stream. Each routing table has one entry for each key
in the stream. Keeping these tables is impractical because the
memory requirements are staggering. In a typical web mining
application, each routing table can easily have billions of keys.
For a moderately large DAG with tens of edges, each with tens
of sources, the memory overhead easily becomes prohibitive.

Finally, as already mentioned, for each stream there are
several sources sending messages in parallel. Modifications to
the routing table must be consistent across all sources, so they
require coordination, which creates further overhead. For these
reasons we consider an alternative approach to load balancing.

III. PARTIAL KEY GROUPING

The problem described so far currently lacks a satisfying
solution. To solve this issue, we resort to a widely-used
technique in the literature of load balancing: the so-called
“power of two choices” (PoTC). While this technique is
well-known and has been analyzed thoroughly both from a
theoretical and practical perspective [16, 17, 18, 19, 4, 20], its
application in the context of DSPEs is not straightforward and
has not been previously studied.

Introduced by Azar et al. [17], PoTC is a simple and elegant
technique that allows to achieve load balance when assigning
units of load to workers. It is best described in terms of
“balls and bins”. Imagine a process where a stream of balls
(units of work) is distributed to a set of bins (the workers) as
evenly as possible. The single-choice paradigm corresponds to
putting each ball into one bin selected uniformly at random. By
contrast, the power of two choices selects two bins uniformly
at random, and puts the ball into the least loaded one. This



simple modification of the algorithm has powerful implications
that are well known in the literature (see Sections IV, VII).

Single choice. The current solution used by all DSPEs to
partition a stream with key grouping corresponds to the single-
choice paradigm. The system has access to a single hash
function H1(k). The partitioning of keys into sub-streams is
determined by the function Pt(k) = H1(k) mod W , where
mod is the modulo operator.

The single-choice paradigm is attractive because of its sim-
plicity: the routing does not require to maintain any state and
can be done independently in parallel. However, it suffers from
a problem of load imbalance [4]. This problem is exacerbated
when the distribution of input keys is skewed.

PoTC. When using the power of two choices, we have
two hash functions H1(k) and H2(k). The algorithm
maps each key to the sub-stream assigned to the least
loaded worker between the two possible choices, that is:
Pt(k) = argmini(Li(t) : H1(k) = i ∨H2(k) = i).

The theoretical gain in load balance with two choices is
exponential compared to a single choice. However, using
more than two choices only brings constant factor improve-
ments [17]. Therefore, we restrict our study to two choices.

PoTC introduces two additional complications. First, to
maintain the semantics of key grouping, the system needs to
keep state and track the choices made. Second, the system has
to know the load of the workers in order to make the right
choice. We discuss these two issues next.

A. Key Splitting

A naı̈ve application of PoTC to key grouping requires the
system to store a bit of information for each key seen, to keep
track of which of the two choices needs to be used thereafter.
This variant is referred to as static PoTC.

Static PoTC incurs some of the problems discussed for key
grouping with rebalancing. Since the actual worker to which a
key is routed is determined dynamically, sources need to keep
a routing table with an entry per key. As already discussed,
maintaining this routing table is often impractical.

In order to leverage PoTC and make it viable for DSPEs, we
relax the requirement of key grouping. Rather than mapping
each key to one of the two possible choices, we allow it to be
mapped to both choices. Every time a source sends a message,
it selects the worker with the lowest current load among the
two candidates associated to that key. This technique, called
key splitting, introduces several new trade-offs.

First, key splitting allows the system to operate in a decen-
tralized manner, by allowing multiple sources to take decisions
independently in parallel. As in key grouping and shuffle
grouping, no state needs to be kept by the system and each
message can be routed independently.

Key splitting enables far better load balancing compared to
key grouping. It allows using PoTC to balance the load on the
workers: by splitting each key on multiple workers, it handles
the skew in the key popularity. Moreover, given that all its
decisions are dynamic and based on the current load of the

system (as opposed to static PoTC), key splitting adapts to
changes in the popularity of keys over time.

Third, key splitting reduces the memory usage and aggrega-
tion overhead compared to shuffle grouping. Given that each
key is assigned to exactly two PEIs, the memory to store its
state is just a constant factor higher than when using key
grouping. Instead, with shuffle grouping the memory grows
linearly with the number of workers W . Additionally, state
aggregation needs to happen only once for the two partial
states, as opposed to W − 1 times in shuffle grouping. This
improvement also allows to reduce the error incurred during
aggregation for some algorithms, as discussed in Section VI.

From the point of view of the application developer, key
splitting gives rise to a novel stream partitioning scheme
called PARTIAL KEY GROUPING, which lies in-between key
grouping and shuffle grouping.

Naturally, not all algorithms can be expressed via PKG.
The functions that can leverage PKG are the same ones
that can leverage a combiner in MapReduce, i.e., associative
functions and monoids. Examples of applications include naı̈ve
Bayes, heavy hitters, and streaming parallel decision trees, as
detailed in Section VI. On the contrary, other functions such
as computing the median cannot be easily expressed via PKG.
Example. Let us examine the streaming top-k word count
example using PKG. In this case, each word is tracked by
two counters on two different PEIs. Each counter holds a
partial count for the word, while the total count is the sum
of the two partial counts. Therefore, the total memory usage
is 2 × K, i.e., O(K). Compare this result to SG where
the memory is O(WK). Partial counts are sent downstream
to an aggregator that computes the final result. For each
word, the application sends two counters, and the aggregator
performs a constant time aggregation. The total work for the
aggregation is O(K). Conversely, with SG the total work is
again O(WK). Compared to KG, the implementation with
PKG requires additional logic, some more memory and has
some aggregation overhead. However, it also provides a much
better load balance which maximizes the resource utilization
of the cluster. The experiments in Section V prove that the
benefits outweigh its cost.

B. Local Load Estimation

PoTC requires knowledge of the load of each worker to
take its routing decision. A DSPE is a distributed system, and,
in general, sources and workers are deployed on different
machines. Therefore, the load of each worker is not readily
available to each source.

Interestingly, we prove that no communication between
sources and workers is needed to effectively apply PoTC.
We propose a local load estimation technique, whereby each
source independently maintains a local load-estimate vector
with one element per worker. The load estimates are updated
by using only local information of the portion of stream sent
by each source. We argue that in order to achieve global load
balance it is sufficient that each source independently balances
the load it generates across all workers.



The correctness of local load estimation directly follows
from our standard definition of load in Section II. The load
on a worker Li is simply the sum of the loads that each source
j imposes on the given worker: Li(t) =

∑
j∈S L

j
i (t). Each

source j can keep an estimate of the load on each worker i
based on the load it has generated Lji . As long as each source
keeps its own portion of load balanced, then the overall load
on the workers will also be balanced. Indeed, the maximum
overall load is at most the sum of the maximum load that each
source sees locally. It follows that the maximum imbalance is
also at most the sum of the local imbalances.

IV. ANALYSIS

We proceed to analyze the conditions under which PKG
achieves good load balance. Recall from Section II that we
have a set W of n workers at our disposal and receive
a sequence of m messages k1, . . . , km with values from a
key universe K. Upon receiving the i-th message with value
ki ∈ K, we need to decide its placement among the workers;
decisions are irrevocable. We assume one message arrives per
unit of time. Our goal is to minimize the eventual maximum
load L(m), which is the same as minimizing the imbalance
I(m). A simple placement scheme such as shuffle grouping
provides an imbalance of at most one, but we would like to
limit the number of workers processing each key to d ∈ N+.

Chromatic balls and bins. We model our problem in the
framework of balls and bins processes, where keys correspond
to colors, messages to colored balls, and workers to bins.
Choose d independent hash functions H1, . . . ,Hd : K → [n]
uniformly at random. Define the Greedy-d scheme as follows:
at time t, the t-th ball (whose color is kt) is placed on the bin
with minimum current load among H1(kt), . . . ,Hd(kt), i.e.,
Pt(kt) = argmini∈{H1(kt),...,Hd(kt)} Li(t). Recall that with
key splitting there is no need to remember the choice for the
next time a ball of the same color appears.

Observe that when d = 1, each ball color is assigned to a
unique bin so no choice has to be made; this models hash-
based key grouping. At the other extreme, when d � n lnn,
all n bins are valid choices, and we obtain shuffle grouping.

Key distribution. Finally, we assume the existence of an
underlying discrete distribution D supported on K from which
ball colors are drawn, i.e., k1, . . . , km is a sequence of m
independent samples from D. Without loss of generality, we
identify the set K of keys with N+ or, if K is finite of
cardinality K = |K|, with [K] = {1, . . . ,K}. We assume
them ordered by decreasing probability: if pi is the probability
of drawing key i from D, then p1 ≥ p2 ≥ p3 . . . and∑
i∈K pi = 1. We also identify the set W of bins with [n].

A. Imbalance with PARTIAL KEY GROUPING

Comparison with standard problems. As long as we keep
getting balls of different colors, our process is identical to
the standard Greedy-d process of Azar et al. [17]. This occurs
with high probability provided that m is small enough. But for
sufficiently large m (e.g., when m ≥ 1

p1
), repeated keys will

start to arrive. Recall that for any number of choices d ≥ 2, the
maximum imbalance after throwing m balls of different colors
into n bins with the standard Greedy-d process is ln lnn

ln d + m
n +

O(1). Unfortunately, such strong bounds (independent of m)
cannot apply to our setting. To gain some intuition on what
may go wrong, consider the following examples where d=2.

Note that for the maximum load not to be much larger than
the average load, the number of bins used must not exceed
O(1/p1), where p1 is the maximum key probability. Indeed,
at any time we expect the two bins h1(1), h2(1) to contain
together at least a p1 fraction of all balls, just counting the
occurrences of a single key. Hence the expected maximum
load among the two grows at a rate of at least p1/2 per unit of
time, while the overall average load increases by exactly 1

n per
unit of time. Thus, if p1 > 2/n, the expected imbalance at time
m will be lower bounded by (p12 −

1
n )m, which grows linearly

with m. This holds irrespective of the placement scheme used.
However, requiring p1 ≤ 2/n is not enough to prevent im-

balance Ω(m). Consider the uniform distribution over n keys.
Let B =

⋃
i≤n{H1(i),H2(i)} be the set of all bins that belong

to one of the potential choices for some key. As is well-known,
the expected size of B is n−n

(
1− 1

n

)2n ≈ n(1− 1
e2 ). So all

n keys use only an (1− 1
e2 ) ≈ 0.865 fraction of all bins, and

roughly 0.135n bins will remain unused. In fact the imbalance
after m balls will be at least m

0.865n −
m
n ≈ 0.156m. The

problem is that most concrete instantiations of our two random
hash functions cause the existence of an “overpopulated” set B
of bins inside which the average bin load must grow faster than
the average load across all bins. (In fact, this case subsumes
our first example above, where B was {H1(1),H2(1)}.)

Finally, even in the absence of overpopulated bin subsets,
some inherent imbalance is due to deviations between the
empirical and true key distributions. For instance, suppose
there are two keys 1, 2 with equal probability 1

2 and n = 4
bins. With constant probability, key 1 is assigned to bins 1, 2
and key 2 to bins 3, 4. This situation looks perfect because the
Greedy-2 choice will send each occurrence of key 1 to bins
1, 2 alternately so the loads of bins 1, 2 will always equal up
to ±1. However, the number of balls with key 1 seen is likely
to deviate from m/2 by roughly Θ(

√
m), so either the top

two or the bottom two bins will receive m/4 + Ω(
√
m) balls,

and the imbalance will be Ω(
√
m) with constant probability.

In the remainder of this section we carry out our analysis,
which broadly construed asserts that the above are the only
impediments to achieve good balance.

Statement of results. We noted that once the number of bins
exceeds 2/p1 (where p1 is the maximum key frequency), the
maximum load will be dominated by the loads of the bins to
which the most frequent key is mapped. Hence the main case
of interest is where p1 = O( 1

n ).
We focus on the case where the number of balls is large

compared to the number of bins. The following results show
that partial key grouping can significantly reduce the maxi-
mum load (and the imbalance), compared to key grouping.



Theorem 4.1: Suppose we use n bins and let m ≥ n2. As-
sume a key distribution D with maximum probability p1 ≤ 1

5n .
Then the imbalance after m steps of the Greedy-d process
satisfies, with probability at least 1− 1

n ,

I(m) =

{
O
(
m
n ·

lnn
ln lnn

)
, if d = 1

O
(
m
n

)
, if d ≥ 2

.

As the next result shows, the bounds above are best-
possible.5

Theorem 4.2: There is a distribution D satisfying the hy-
pothesis of Theorem 4.1 such that the imbalance after m steps
of the Greedy-d process satisfies, with probability at least
1− 1

n ,

I(m) =

{
Ω
(
m
n ·

lnn
ln lnn

)
, if d = 1

Ω
(
m
n

)
, if d ≥ 2

.

We omit the proof of Theorem 4.2 (it follows by considering
a uniform distribution over 5n keys). The next section is
devoted to the proof of the upper bound, Theorem 4.1.

B. Proof

Concentration inequalities. We recall the following results,
which we need to prove our main theorem.

Theorem 4.3 (Chernoff bounds): Suppose {Xi} is a se-
quence of independent random variables with Xi ∈ [0,M ]
and let Y =

∑
iXi, µ =

∑
i E[Xi]. Then for all β ≥ µ,

Pr[Y ≥ β] ≤ C(µ, β,M),

where

C(µ, β,M) , exp
(
−
β ln( βeµ ) + µ

M

)
.

Theorem 4.4 (McDiarmid’s inequality): Let X1, . . . , Xn

be a vector of independent random variables and let f be a
function satisfying |f(a) − f(a′)| ≤ 1 whenever the vectors
a and a′ differ in just one coordinate. Then

Pr[f(X1, . . . , Xn) > E[f(X1, . . . , Xn)] + λ] ≤ exp(−2λ2).

The µr measure of bin subsets. For every nonempty set of
bins S ⊆ [n] and 1 ≤ r ≤ d, define

µr(S) =
∑
{pi | {H1(i), . . . ,Hr(i)} ⊆ B}.

We will be interested in µ1(B) (which measures the proba-
bility that a random key from D will have its choice inside
B) and µd(B) (which measures the probability that a random
key from D will have all its choices inside B). Note that
µ1(B) =

∑
j∈B µ1({j}) and µd(B) ≤ µ1(B).

Lemma 4.5: For every B ⊆ [n], E[µ1(B)] = |B|
n and, if

p1 ≤ 1
n ,

Pr

[
µ1(B) ≥ |B|

n
(eλ)

]
≤
(

1

λλ

)|B|
.

5However, the imbalance can be much smaller than the worst-case bounds from
Theorem 4.1 if the probability of most keys is much smaller than p1, which is the
case in many setups.

Proof: The first claim follows from linearity of expecta-
tion and the fact that

∑
i pi = 1. For the second, let |B| = k.

Using Theorem 4.3, Pr
[
µ1(B) ≥ k

n (eλ)
]

is at most

C

(
k

n
,
k

n
eλ, p1

)
≤ exp

(
− k

np
eλ lnλ

)
≤ exp(−kλ lnλ),

since np ≤ 1.

Lemma 4.6: For every B ⊆ [n], E[µd(B)] =
(
|B|
n

)d
and,

provided that p1 ≤ 1
5n ,

Pr

[
µd(B) ≥ |B|

n

]
≤
(
e|B|
n

)5|B|

.

Proof: Again the first claim is easy. For the second, let
|B| = k. Using Theorem 4.3, Pr

[
µd(B) ≥ k

n

]
is at most

C

((k
n

)d
,
k

n
, p1

)
≤ exp

(
−k(d− 1)

np1
ln
( n
ek

))
≤ exp

(
−5k ln

( n
ek

))
since np ≤ 1

5 .
Corollary 4.7: Assume p1 ≤ 1

4n , d ≥ 2. Then, with high
probability,

max

{
µd(B)

|B|/n

∣∣∣∣B ⊆ [n], |B| ≤ n

5

}
≤ 1.

Proof: We use Lemma 4.5 and the union bound. The
probability that the claim fails to hold is bounded by∑
|B|≤n/5

Pr

[
µd(B) ≥ k

n

]
≤
∑
k≤n/5

(
n

k

)(
ek

n

)5k

≤
∑
k≤n/5

(en
k

)k (ek
n

)5k

= o

(
1

n

)
,

where we used
(
n
k

)
≤
(
en
k

)k
, valid for all k.

For a scheduling algorithm A and a set B ⊆ [n] of bins,
write LAB(t) = maxj∈B Lj(t) for the maximum load among
the bins in B after t balls have been processed by A.

Lemma 4.8: Suppose there is a set A ⊆ [n] of bins such
that for all T ⊆ A, µd(T ) ≤ |T |n . Then A = Greedy-d satisfies
LAA(m) = O(mn ) + LA[n]\A(m) with high probability.

Proof: We use a coupling argument. Consider the fol-
lowing two independent processes P and Q: P proceeds as
Greedy-d, while Q picks the bin for each ball independently
at random from [n] and increases its load. Consider any time
t at which the load vector is ωt ∈ Nn and Mt = M(ωt) is
the set of bins with maximum load. After handling the t-th
ball, let Xt denote the event that P increases the maximum
load in A because the new ball has all choices in Mt∩A, and
Yt denote the event that Q increases the maximum load in A.
Finally, let Zt denote the event that P increases the maximum
load in A because the new ball has some choice in Mt ∩ A
and some choice in Mt \A, but the load of one of its choices
in Mt ∩ A is no larger. We identify these events with their
indicator random variables.



Note that the maximum load in A at the end of Process P
is LPA(m) =

∑
t∈[m](Xt+Zt), while at the end of Process Q

is LQA(m) =
∑
t∈[m] Yt. Conditioned on any load vector ωt,

the probability of Xt is

Pr[Xt | ωt] = µd(Mt∩A) ≤ |Mt ∩A|
n

≤ |Mt|
n

= Pr[Yt | ωt],

So Pr[Xt | ωt] ≤ Pr[Yt | ωt], which implies that for any
b ∈ N, Pr[

∑
t∈[m]Xt ≤ b] ≥ Pr[

∑
t∈[m] Yt ≤ b]. But with

high probability, the maximum load of Process Q is b =
O(m/n), so

∑
tXt = O(m/n) holds with at least the same

probability. On the other hand,
∑
t Zt ≤ LP[n]\A(m) because

each occurrence of Zt increases the maximum load on A, and
once a time t is reached such that LPA(t) > LP[n]\A(m), event
Zt must cease to happen. Therefore LPA(m) =

∑
t∈[m]Xt +∑

t∈[m] Zt ≤ O(m/n) + LP[n]\A(m), yielding the result.
Proof of Theorem 4.1: Let

A =

{
j ∈ [n] | µ1({j}) ≥ 3e

n

}
.

Observe that every bin j /∈ A has µ1({j}) < 3e
n and this

implies that, conditioned on the choice of hash functions, the
maximum load of all bins outside A is at most 20

n with high
probability.6 Therefore our task reduces to showing that the
maximum load of the bins in A is O(mn ).

Assume that the thesis of Corollary 4.7 holds, which hap-
pens except with probability o(1/n). Consider the sequence
of random variables given by Xj = µ1({j}), and let f =
f(X1, X2, . . .) =

∑
j I [µ1({j}) > 3e

n ]. By Lemma 4.5,
|A| = E[f ] ≤ 1

27 . Moreover, the function f satisfies the
hypothesis of Theorem 4.4. We conclude that, with high
probability, |A| ≤ n

5 .

By Corollary 4.7, we have that for all B ⊆ A, µ2(B) ≤ |B|n .
Thus Lemma 4.8 applies to A. This means that after throwing
m balls, the maximum load among the bins in A is O(mn ), as
we wished to show.

V. EVALUATION

We assess the performance of our proposal by using both
simulations and a real deployment. In so doing, we answer the
following questions:
Q1: What is the effect of key splitting on PoTC?
Q2: How does local estimation compare to a global oracle?
Q3: How robust is PARTIAL KEY GROUPING?
Q4: What is the overall effect of PARTIAL KEY GROUPING

on applications deployed on a real DSPE?

A. Experimental Setup

Datasets. Table I summarizes the datasets used. We use two
main real datasets, one from Wikipedia and one from Twitter.
These datasets were chosen for their large size, their differ-
ent degree of skewness, and because they are representative
of Web and online social network domains. The Wikipedia

6This is by majorization with the process that just throws every ball to the
first choice; see, e.g, Azar et al. [17].

TABLE I: Summary of the datasets used in the experiments:
number of messages, number of keys and percentage of
messages having the most frequent key (p1).

Dataset Symbol Messages Keys p1(%)

Wikipedia WP 22M 2.9M 9.32
Twitter TW 1.2G 31M 2.67
Cashtags CT 690k 2.9k 3.29

Synthetic 1 LN1 10M 16k 14.71
Synthetic 2 LN2 10M 1.1k 7.01

LiveJournal LJ 69M 4.9M 0.29
Slashdot0811 SL1 905k 77k 3.28
Slashdot0902 SL2 948k 82k 3.11

dataset (WP)7 is a log of the pages visited during a day in
January 2008. Each visit is a message and the page’s URL
represents its key. The Twitter dataset (TW) is a sample of
tweets crawled during July 2012. Each tweet is parsed and
split into its words, which are used as the key for the message.

An additional Twitter dataset comprises a sample of tweets
crawled in November 2013. The keys for the messages are
the cashtags in these tweets. A cashtag is a ticker symbol
used in the stock market to identify a publicly traded company
preceded by the dollar sign (e.g., $AAPL for Apple). Popular
cash tags change from week to week. This dataset allows to
study the effect of shift of skew in the key distribution.

We also generate two synthetic datasets (LN1, LN2) with
keys following a log-normal distribution, a commonly used
heavy-tailed skewed distribution [21]. The parameters of the
distribution (µ1=1.789, σ1=2.366; µ2=2.245, σ2=1.133) come
from an analysis of Orkut, and try to emulate workloads from
the online social network domain [22].

Finally, we experiment on three additional datasets com-
prised of directed graphs8 (LJ, SL1, SL2). We use the edges
in the graph as messages and the vertices as keys. These
datasets are used to test the robustness of PKG to skew in
partitioning the stream at the sources, as explained next.
They also represent a different kind of application domain:
streaming graph mining.
Simulation. We process the datasets by simulating the DAG
presented in Figure 1. The stream is composed of times-
tamped keys that are read by multiple independent sources (S)
via shuffle grouping, unless otherwise specified. The sources
forward the received keys to the workers (W) downstream.
In our simulations we assume that the sources perform data
extraction and transformation, while the workers perform data
aggregation, which is the most computationally expensive part
of the DAG. Thus, the workers are the bottleneck in the DAG
and the focus for the load balancing.

B. Experimental Results

Q1. We measure the imbalance in the simulations when using
the following techniques:

7http://www.wikibench.eu/?page id=60
8http://snap.stanford.edu/data

http://www.wikibench.eu/?page_id=60
http://snap.stanford.edu/data
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Fig. 2: Fraction of average imbalance with respect to total number of messages for each dataset, for different number of
workers and number of sources.

TABLE II: Average imbalance when varying the number of
workers for the Wikipedia and Twitter datasets.

Dataset WP TW

W 5 10 50 100 5 10 50 100

PKG 0.8 2.9 5.9e5 8.0e5 0.4 1.7 2.74 4.0e6
Off-Greedy 0.8 0.9 1.6e6 1.8e6 0.4 0.7 7.8e6 2.0e7
On-Greedy 7.8 1.4e5 1.6e6 1.8e6 8.4 92.7 1.2e7 2.0e7
PoTC 15.8 1.7e5 1.6e6 1.8e6 2.2e4 5.1e3 1.4e7 2.0e7
Hashing 1.4e6 1.7e6 2.0e6 2.0e6 4.1e7 3.7e7 2.4e7 3.3e7

H: Hashing, which represents standard key grouping (KG)
and is our main baseline. We use a 64-bit Murmur hash
function to minimize the probability of collision.

PoTC: Power of two choices without using key splitting, i.e.,
traditional PoTC applied to key grouping.

On-Greedy: Online greedy algorithm that picks the least
loaded worker to handle a new key.

Off-Greedy: Offline greedy sorts the keys by decreasing fre-
quency and executes On-Greedy.

PKG: PoTC with key splitting.
Note that PKG is the only method that uses key splitting.

Off-Greedy knows the whole distribution of keys so it repre-
sents an unfair comparison for online algorithms.

Table II shows the results of the comparison on the two main
datasets WP and TW. Each value is the average imbalance
measured throughout the simulation. As expected, hashing per-
forms the worst, creating a large imbalance in all cases. While
PoTC performs better than hashing in all the experiments, it is
outclassed by On-Greedy on TW. On-Greedy performs very
close to Off-Greedy, which is a good result considering that
it is an online algorithm. Interestingly, PKG performs even
better than Off-Greedy. Relaxing the constraint of KG allows
to achieve a load balance comparable to offline algorithms.

We conclude that PoTC alone is not enough to guarantee
good load balance, and key splitting is fundamental not only
to make the technique practical in a distributed system, but
also to make it effective in a streaming setting. As expected,
increasing the number of workers also increases the average
imbalance. The behavior of the system is binary: either well
balanced or largely imbalanced. The transition between the

two states happens when the number of workers surpasses the
limit O(1/p1) described in Section IV, which happens around
50 workers for WP and 100 for TW.

Q2. Given the aforementioned results, we focus our attention
on PKG henceforth. So far, it still uses global information about
the load of the workers when deciding which choice to make.
Next, we experiment with local estimation, i.e., each source
performs its own estimation of the worker load, based on the
sub-stream processed so far.

We consider the following alternatives:
G: PKG with global information of worker load.
L: PKG with local estimation of worker load and different

number of sources, e.g., L5 denotes S = 5.
LP: PKG with local estimation and periodic probing of worker

load every Tp minutes. For instance, L5P1 denotes S = 5
and Tp = 1. When probing is executed, the local estimate
vector is set to the actual load of the workers.

Figure 2 shows the average imbalance (normalized to the
size of the dataset) with different techniques, for different
number of sources and workers, and for several datasets. The
baseline (H) always imposes very high load imbalance on the
workers. Conversely, PKG with local estimation (L) has always
a lower imbalance. Furthermore, the difference from the global
variant (G) is always less than one order of magnitude. Finally,
this result is robust to changes in the number of sources.

Figure 3 displays the imbalance of the system through time
I(t) for TW, WP and CT, 5 sources, and for W = 10 and
50. Results for W = 5 and W = 100 are omitted as they are
similar to W = 10 and W = 50, respectively. PKG with global
information (G) and its variant with local estimation (L5)
perform best. Interestingly, even though both G and L achieve
very good load balance, their choices are quite different. In
an experiment measuring the agreement on the destination of
each message, G and L have only 47% Jaccard overlap. Hence,
L reaches a local minimum which is very close in value to the
one obtained by G, although different. Also in this case, good
balance can only be achieved up to a number of workers that
depends on the dataset. When that number is exceeded, the
imbalance increases rapidly, as seen in the cases of WP and
partially for CT for W = 50, where all techniques lead to the
same high load imbalance.
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Fig. 3: Fraction of imbalance through time for different
datasets, techniques, and number of workers, with S = 5.

Finally, we compare our local estimation strategy with a
variant that makes use of periodic probing of workers’ load
every minute (L5P1). Probing removes any inconsistency in the
load estimates that the sources may have accumulated. How-
ever, interestingly, this technique does not improve the load
balance, as shown in Figure 3. Even increasing the frequency
of probing does not reduce imbalance (results not shown in the
figure for clarity). In conclusion, local information is sufficient
to obtain good load balance, therefore it is not necessary to
incur the overhead of probing.

Q3. To operationalize this question, we use the directed graphs
datasets. We use KG to distribute the messages to the sources
to test the robustness of PKG to skew in the sources, i.e.,
when each source forwards an uneven part of the stream. We
simulate a simple application that computes a function of the
incoming edges of a vertex (e.g., in-degree, PageRank). The
input keys for the source PE is the source vertex id, while the
key sent to the worker PE is the destination vertex id, that is,
the source PE inverts the edge. This schema projects the out-
degree distribution of the graph on sources, and the in-degree
distribution on workers, both of which are highly skewed.

Figure 4 shows the average imbalance for the experiments
with a skewed split of the keys to sources for the LJ social
graph (results on SL1 and SL2 are similar to LJ and are
omitted due to space constraint). For comparison, we include
the results when the split is performed uniformly using shuffle
grouping of keys on sources. On average, the imbalance
generated by the skew on sources is similar to the one obtained
with uniform splitting. As expected, the imbalance slightly
increases as the number of sources and workers increase, but,
in general, it remains at very low absolute values.
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Fig. 4: Fraction of average imbalance with uniform and
skewed splitting of the input keys on the sources when using
the LJ graph.

To answer Q3, we additionally experiment with drift in
the skew distribution by using the cashtag dataset (CT). The
bottom row of Figure 3 demonstrates that all techniques
achieve a low imbalance, even though the change of key
popularity through time generates occasional spikes.

In conclusion, PKG is robust to skew on the sources, and can
therefore be chained to key grouping. It is also robust to the
drift in key distribution common of many real-world streams.

Q4. We implement and test our technique on the streaming
top-k word count example, and perform two experiments to
compare PKG, KG, and SG on WP. We choose word count
as it is one of the simplest possible examples, thus limiting
the number of confounding factors. It is also representative
of many data mining algorithms as the ones described in
Section VI (e.g., counting frequent items or co-occurrences
of feature-class pairs). Due to the requirement of real-world
deployment on a DSPE, we ignore techniques that require
coordination (i.e., PoTC and On-Greedy). We use a topology
configuration of a single source along with 9 workers (coun-
ters) running on a storm cluster of 10 virtual servers. We report
overall throughput, end-to-end latency, and memory usage.

In the first experiment, we emulate different levels of CPU
consumption per key by adding a fixed delay to the processing.
We prefer this solution over implementing a specific applica-
tion in order to be able to control the load on the workers.
We choose a range that is able to bring our configuration to
a saturation point, although the raw numbers would vary for
different setups. Even though real deployments rarely operate
at saturation point, PKG allows better resource utilization,
therefore supporting the same workload on a smaller number
of machines. In this case, the minimum delay (0.1ms) cor-
responds approximately to reading 400kB sequentially from
memory, while the maximum delay (1ms) to 1

10 -th of a disk
seek.9 Nevertheless, even more expensive tasks exist: parsing
a sentence with NLP tools can take up to 500ms.10

The system does not perform aggregation in this setup,
as we are only interested in the raw effect on the workers.
Figure 5(a) shows the throughput achieved when varying the
CPU delay for the three partitioning strategies. Regardless of
the delay, SG and PKG perform similarly, and their throughput
is higher than KG. The throughput of KG is reduced by ≈ 60%

9http://brenocon.com/dean perf.html
10http://nlp.stanford.edu/software/parser-faq.shtml#n

http://brenocon.com/dean_perf.html
http://nlp.stanford.edu/software/parser-faq.shtml#n
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when the CPU delay increases tenfold, while the impact on
PKG and SG is smaller (≈ 37% decrease). We deduce that
reducing the imbalance is critical for clusters operating close
to their saturation point, and that PKG is able to handle
bottlenecks similarly to SG and better than KG. In addition,
the imbalance generated by KG translates into longer latencies
for the application. When the workers are heavily loaded, the
average latency with KG is up to 45% larger than with PKG.
Finally, the benefits of PKG over SG regarding memory are
substantial. Overall, PKG (3.6M counters) requires about 30%
more memory than KG (2.9M counters), but about half the
memory of SG (7.2M counters).

In the second experiment, we fix the CPU delay to 0.4ms
per key, as it is the saturation point for KG in our setup. We
activate the aggregation of counters at different time intervals
T to emulate different application policies for when to receive
up-to-date top-k word counts. In this case, PKG and SG need
additional memory compared to KG to keep partial counters.
Shorter aggregation periods reduce the memory requirements,
as partial counters are flushed often, at the cost of a higher
number of aggregation messages. Figure 5(b) shows the rela-
tionship between throughput and memory overhead for PKG
and SG. The throughput of KG is shown for comparison. For all
values of aggregation period, PKG achieves higher throughput
than SG, with lower memory overhead and similar average
latency per message. When the aggregation period is above
30s, the benefits of PKG compensate its extra overhead and its
overall throughput is higher than when using KG.

VI. APPLICATIONS

PKG is a novel programming primitive for stream parti-
tioning and not every algorithm can be expressed with it. In
general, all algorithms that use shuffle grouping can use PKG to
reduce their memory footprint. In addition, many algorithms
expressed via key grouping can be rewritten to use PKG in
order to get better load balancing. In this section we provide
a few such examples of common data mining algorithms, and
show the advantages of PKG. Henceforth, we assume that each
message contains a data point for the application, e.g., a feature
vector in a high-dimensional space.

A. Naı̈ve Bayes Classifier

A naı̈ve Bayes classifier is a probabilistic model that as-
sumes independence of features. It estimates the probability of
a class C given a feature vector X by using Bayes’ theorem.
In practice, the classifier works by counting the frequency of
co-occurrence of each feature and class values.

The simplest way to parallelize this algorithm is to spread
the counters across several workers via vertical parallelism,
i.e., each feature is tracked independently in parallel. Fol-
lowing this design, the algorithm can be implemented by the
same pattern used for the KG example in Section II-A. Sparse
datasets often have a skewed distribution of features, e.g., for
text classification. Therefore, this implementation suffers from
the same load imbalance, which PKG solves.

Horizontal parallelism can also be used to parallelize the
algorithm, i.e., by shuffling messages to separate workers.
This implementation uses the same pattern as the DAG in the
SG example in Section II-A. The count for a single feature-
class pair is distributed across several workers, and needs
to be combined at prediction (query) time. This combination
requires broadcasting the query to all the workers, as a feature
can be tracked by any worker. This implementation, while
balancing the work better than key grouping, requires an
expensive query stage that may be affected by stragglers.

PKG tracks each feature on two workers and avoids repli-
cating counters on all workers. Furthermore, the two workers
are deterministically assigned for each feature. Thus, at query
time, the algorithm needs to probe only two workers for each
feature, rather than having to broadcast it to all the workers.
The resulting query phase is less expensive and less sensitive
to stragglers than with shuffle grouping.

B. Streaming Parallel Decision Tree

A decision tree is a classification algorithm that uses a tree-
like model where nodes are tests on features, branches are
possible outcomes, and leafs are class assignments.

Ben-Haim and Tom-Tov [1] propose an algorithm to build
a streaming parallel decision tree that uses approximated
histograms to find the test value for continuous features. Mes-
sages are shuffled among W workers. Each worker generates
histograms independently for its sub-stream, one histogram
for each feature-class-leaf triplet. These histograms are then
periodically sent to a single aggregator that merges them to
get an approximated histogram for the whole stream. The
aggregator uses this final histogram to grow the model by
taking split decisions for the current leaves in the tree. Overall,
the algorithm keeps W ×D×C ×L histograms, where D is
the number of features, C is the number of classes, and L is
the current number of leaves.

The memory footprint of the algorithm depends on W , so
it is impossible to fit larger models by increasing the paral-
lelism. Moreover, the aggregator needs to merge W ×D×C
histograms each time a split decision is tried, and merging the
histograms is one of the most expensive operations.

Instead, PKG reduces both the space complexity and aggre-
gation cost. If applied on the features of each message, a single



feature is tracked by two workers, with an overall cost of only
2×D×C×L histograms. Furthermore, the aggregator needs to
merge only two histograms per feature-class-leaf triplet. This
scheme allows to alleviate memory pressure by adding more
workers, as the space complexity does not depend on W .

C. Heavy Hitters and Space Saving

The heavy hitters problem consists in finding the top-k most
frequent items occurring in a stream. The SPACESAVING [23]
algorithm solves this problem approximately in constant time
and space. Recently, Berinde et al. [2] have shown that
SPACESAVING is space-optimal, and how to extend its guaran-
tees to merged summaries. This result allows for parallelized
execution by merging partial summaries built independently
on separate sub-streams.

In this case, the error bound on the frequency of a single
item depends on a term representing the error due to the
merging, plus another term which is the sum of the errors
of each individual summary for a given item i:

| f̂i − fi |≤ ∆f +

W∑
j=i

∆j

where fi is the true frequency of item i and f̂i is the estimated
one, each ∆j is the error from summarizing each sub-stream,
while ∆f is the error from summarizing the whole stream,
i.e., from merging the summaries.

Observe that the error bound depends on the parallelism
level W . Conversely, by using KG, the error for an item
depends only on a single summary, thus it is equivalent to
the sequential case, at the expense of poor load balancing.

Using PKG we achieve both benefits: the load is balanced
among workers, and the error for each item depends on the
sum of only two error terms, regardless of the parallelism level.
However, the individual error bounds may depend on W .

VII. RELATED WORK

Various works in the literature either extend the theoretical
results from the power of two choices, or apply them to the
design of large-scale systems for data processing.

Theoretical results. Load balancing in a DSPE can be seen
as a balls-and-bins problem, where m balls are to be placed
in n bins. The power of two choices has been extensively
researched from a theoretical point of view for balancing the
load among machines [4, 20]. Previous results consider each
ball equivalent. For a DSPE, this assumption holds if we map
balls to messages and bins to servers. However, if we map balls
to keys, more popular keys should be consider to be heavier.
Talwar and Wieder [21] tackle the case where each ball has a
weight drawn independently from a fixed weight distribution
X . They prove that, as long as X is “smooth”, the expected
imbalance is independent of the number of balls. However, the
solution assumes that X is known beforehand, which is not
the case in a streaming setting. Thus, in our work we take the
standard approach of mapping balls to messages.

Another assumption common in previous works is that there
is a single source of balls. Existing algorithms that extend
PoTC to multiple sources execute several rounds of intra-
source coordination before taking a decision [16, 19, 24].
Overall, these techniques incur a significant coordination
overhead, which becomes prohibitive in a DSPE that handles
thousands of messages per second.

Stream processing systems. Existing load balancing tech-
niques for DSPEs are analogous to key grouping with rebalanc-
ing [5, 8, 9, 10, 11, 12]. In our work, we consider operators
that allow replication and aggregation, similar to a standard
combiner in map-reduce, and show that it is sufficient to
balance load among two replicas based local load estimation.
We refer to Section II-A for a more extensive discussion of
key grouping with rebalancing. Flux monitors the load of
each operator, ranks servers by load, and migrates operators
from the most loaded to the least loaded server, from the
second most loaded to the second least loaded, and so on [5].
Aurora* and Medusa propose policies to migrating operators
in DSPEs and federated DSPEs [8]. Borealis uses a similar
approach but it also aims at reducing the correlation of load
spikes among operators placed on the same server [9]. This
correlation is estimated by using a finite set of load samples
taken in the recent past. Gedik [10] developed a partitioning
function (a hybrid between explicit mapping and consistent
hashing of items to servers) for stateful data parallelism in
DSPEs that leverages item frequencies to control migration
cost and imbalance in the system. Similarly, Balkesen et
al. [11] proposed frequency-aware hash-based partitioning to
achieve load balance. Castro Fernandez et al. [12] propose
integrating common operator state management techniques for
both checkpointing and migration.

Other distributed systems. Several storage systems use con-
sistent hashing to allocate data items to servers [25]. Consistent
hashing substantially produces a random allocation and is de-
signed to deal with systems where the set of servers available
varies over time. In this paper, we propose replicating DSPE
operators on two servers selected at random. One could use
consistent hashing also to select these two replicas, using the
replication technique used by Chord [26] and other systems.

Sparrow [27] is a stateless distributed job scheduler that
exploits a variant of the power of two choices [24]. It employs
batch probing, along with late binding, to assign m tasks of
a job to the least loaded of d×m randomly selected workers
(d ≥ 1). Sparrow considers only independent tasks that can be
executed by any worker. In DSPEs, a message can only be sent
to the workers that are accumulating the state corresponding
to the key of that message. Furthermore, DSPEs deal with
messages that arrive at a much higher rate than Sparrow’s
fine-grained tasks, so we prefer to use local load estimation.

In the domain of graph processing, several systems have
been proposed to solve the load balancing problem, e.g.,
Mizan [28], GPS [29], and xDGP [30]. Most of these systems
perform dynamic load rebalancing at runtime via vertex migra-
tion. We have already discussed why rebalancing is impractical
in our context in Section II.



Finally, SkewTune [31] solves the problem of load balanc-
ing in MapReduce-like systems by identifying and redistribut-
ing the unprocessed data from the stragglers to other workers.
Techniques such as SkewTune are a good choice for batch
processing systems, but cannot be directly applied to DSPEs.

VIII. CONCLUSION

Despite being a well-known problem in the literature, load
balancing has not been exhaustively studied in the context of
distributed stream processing engines. Current solutions fail
to provide satisfactory load balance when faced with skewed
datasets. To solve this issue, we introduced PARTIAL KEY
GROUPING, a new stream partitioning strategy that allows
better load balance than key grouping while incurring less
memory overhead than shuffle grouping. Compared to key
grouping, PKG is able to reduce the imbalance by up to several
orders of magnitude, thus improving throughput and latency
of an example application by up to 45%.

This work gives rise to further interesting research ques-
tions. Is it possible to achieve good load balance without
foregoing atomicity of processing of keys? What are the
necessary conditions, and how can it be achieved? In partic-
ular, can a solution based on rebalancing be practical? And
in a larger perspective, which other primitives can a DSPE
offer to express algorithms effectively while making them run
efficiently? While most DSPEs have settled on just a small set,
the design space still remains largely unexplored.
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