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ABSTRACT

Cloud configuration optimization is the procedure to determine the
number and the type of instances to use when deploying an applica-
tion in cloud environments, given a cost or performance objective.
In the absence of a performance model for the distributed appli-
cation, black-box optimization can be used to perform automatic
cloud configuration. Numerous black-box optimization algorithms
have been developed; however, their comparative evaluation has so
far been limited to the hyper-parameter optimization setting, which
differs significantly from the cloud configuration problem. In this
paper, we evaluate 8 commonly used black-box optimization algo-
rithms to determine their applicability for the cloud configuration
problem. Our evaluation, using 23 different workloads, shows that
in several cases Bayesian optimization with Gradient boosted re-
gression trees performs better than methods chosen by prior work.
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1. INTRODUCTION

Resource intensive applications such as analytical query process-
ing, machine learning training, or other data-parallel applications
are often run on cloud resources. The cloud provides great flexi-
bility to scale computation up (by picking appropriately sized com-
puting instances) and out (by choosing how many instances to use).
However, this blessing can also be a curse since choosing the best
configuration is often not straightforward.

Different applications and workloads have different behavior and
resource requirements, and therefore their optimal cloud configura-
tion is not the same. Furthermore, choosing the right configuration
is crucial not only for cost efficiency but also to meet service-level
objectives on the completion time for these jobs. To illustrate this,
Figure 1 shows the heatmap of the normalized execution time and
execution cost of two workloads on a cloud configuration search
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space. The configurations shown in orange are those with more
than an order of magnitude higher runtime or execution cost com-
pared to the best configuration in the search space. This highlights
that choosing a bad configuration can lead to significantly higher
execution time and execution cost than choosing the best configu-
ration (up to 47 and 12.5 times higher, respectively).

Exhaustively testing the workload on all possible cloud config-
urations is very expensive and wasteful. This has recently led to
several proposals for automatically finding a close to optimal con-
figuration, quickly and at a low cost. Cherrypick [9], PARIS [38],
Scout [27], Micky [26], and Arrow [25] are just some examples
of approaches in this space. Each of these proposals employs a
specific black-box optimization algorithm, such as random forests,
Bayesian optimization with Gaussian processes, or Bayesian opti-
mization with extra trees. By leveraging generic black-box mod-
els, these systems avoid creating an analytical model, which would
require capturing the complex relationship between the execution
time of an application, the resources of the cloud instances, and the
input workload.

Existing work on cloud configurations focuses on applying spe-
cific black-box optimization algorithms to solve the problem but
falls short of providing a complete characterization of which al-
gorithm is more suitable in which situation. As a consequence,
it is not clear whether the optimization performance of these prior
works is based on the selection of the optimization algorithms or on
additional design decisions in their approaches. For example, Cher-
rypick uses Bayesian optimization with Gaussian processes while
Arrow uses Bayesian optimization with extra trees. But it is not
clear how much of the performance gain is because of the choice of
the optimization algorithm itself, if any. A similar question arises
when determining the advantages of techniques like augmenting
Bayesian optimization with low-level performance metrics [25] or
augmenting the search space with some prior knowledge about the
performance of a similar workload [27].

This paper fills this gap by performing an exhaustive comparison
of 8 black-box optimization techniques using a total of 23 different
workloads and two different search spaces with 69 and 140 differ-
ent cloud configurations, respectively. Our evaluation highlights
how searching for a cloud configuration has some peculiar char-
acteristics that are different from other applications of black-box
modeling, for example, hyper-parameter search [17]. On the one
hand, running a cloud configuration setting is very expensive. It re-
quires starting up a cluster, deploying the application, and running
the workload. Therefore, it is typically only feasible to explore a
limited number of solutions. On the other hand, the search space
is relatively small, since a configuration consists of selected com-
binations of instance type and cluster sizes, and both parameters —
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Figure 1: (a, b) Execution time and execution cost for two selected workloads in D.S; (see Table 2) shown as a heatmap normalized by the best
configuration for each respective metric. The blank boxes are configurations that were either not present in the dataset or do not execute the
workload successfully. (c) An example of the optimization samples of a black-box algorithm on a search space.

instance type and the number of instances — have a relatively small
range of possible values in practice. Furthermore, these parameters
are integer and categorical, as opposed to continuous parameters.

Another contribution of this paper is to produce an analysis of
different variants of Bayesian Optimization (BO), which is the most
common technique used by existing work. Our analysis shows
that, in several cases, BO with Gradient Boosted Regression Trees
(GBRT) outperforms the methods used in prior research. Addition-
ally, while prior work employs Expected Improvement (EI) as an
acquisition function, we found the Probability of Improvement (PI)
to be a better alternative for cloud configuration.

Overall, our results show that BO outperforms other algorithms
that we analyzed in our empirical study. In terms of its variants,
BO with Gaussian Processes (GP) and BO with GBRT provide the
best performance when optimizing for execution cost and execu-
tion time, respectively. BO with GBRT provides up to 20% better
execution time and BO with GP is able to provide up to 40% bet-
ter execution cost. Unlike prior work, we also consider running
optimization in an online mode, where different configurations are
tested in the initial runs of a production setting with an upper bound
on the execution time. We perform a break-even analysis to see
when the cost of finding an optimal configuration can be amor-
tized. Lastly, we provide a decision workflow for users to select an
appropriate optimization algorithm based on their requirements.

Our experimental data and the implementation of black-box op-
timization algorithms are available [1] to facilitate further research
on cloud configuration optimization.

2. BACKGROUND AND RELATED WORK

2.1 Problem statement

We formalize the cloud configuration problem as the problem
of finding a configuration of resources (i.e., the type and number
of machine instances) that minimizes an objective function. For
example, the objective function could be job execution time or ex-
ecution cost (or a combination of both). Formally, a cloud config-
uration can be denoted as a tuple © = (N, I, Is) where N is the
number of instances, I is the instance family and I is the instance
size. Instance family and instance size combine to form a particular
instance type that can be requested from the cloud provider.

An instance type defines the CPU, memory, and storage capabil-
ities of an instance. To define instance types, we follow the conven-
tion in use at many cloud providers that group their instance types
based on their instance family (e.g., general-purpose, compute- or
memory-optimized) and instance size (e.g., large, xlarge, 2xlarge).

Table 1: Prior work, corresponding optimization algorithms and cloud
configurations that they optimize.

Prior work B:zgg;fgx Optimization goal
N/A .
Ernest [34] (White-Box Model) Cluster size
BO with Instance type and

Cherrypick [9]

Gaussian Processes Cluster size

PARIS [38] Random Forests Instance type
BO with

Arrow [25] Extra Trees Instance type

Micky [26] Multi-armed bandit Instance type

Scout [27] Custom search Instance type and

Cluster size

The instance family expresses the class of hardware specifications
that may best meet the requirements of different applications as
well as a CPU-memory ratio. The instance size, in turn, allows
for choosing the number of virtual CPUs, the available memory
size, local storage, and network bandwidth. We assume that there
is a finite set of instance types and a finite number of choices for
the number of instances. The set of all possible combinations of
instance types and number of instances yields the configuration
search space.

Figure 1c shows an example of the sequence of configurations
explored in a search space for cloud configuration. The x-axis has
the instance types (available in AWS) and the y-axis has the number
of nodes in the cluster. The heatmap colors represent normalized
runtime w.r.t. the best execution time in the search space: con-
figurations with darker colors are closer to the best configuration
(which is shown with the green hexagon). Most optimization algo-
rithms start with a set of initial samples (shown with white circles)
and then proceed with performing some optimization runs (shown
with white hexagons), eventually reaching, or at least approaching,
the best configuration in the search space.

2.2 Prior approaches

The problem of automatic cloud configuration has attracted the
attention of the research community as of late. Table 1 shows prior
work in the area, the optimization algorithms that they use and the
cloud configurations that they optimize for. In general, prior work
compares only against random search or coordinate descent, ex-
cluding other alternative black-box optimization algorithms. Our
work is aimed at filling this gap.

In Ernest [34], the authors develop an analytical model to pre-
dict performance for machine learning jobs in Apache Spark. The
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model predicts the performance of the jobs on different cluster
sizes. The coefficients of the analytical model are learned by ac-
tually executing the workload under consideration, on some of the
cloud configurations. However, the model is limited to machine
learning applications and has to be trained for each instance family.

White-box analytical performance models are complex to derive
and limited in scope. Therefore, much of the subsequent work has
focused on black-box performance models.

PARIS [38] aims to find the best instance types for a given work-
load and user goals. It builds a regression model to estimate the
execution time and running cost of different instance types. Offline
benchmarking is used to develop a collection of performance infor-
mation about benchmarked applications. This data is then used to
train a black-box performance model using random forests. New
workloads are first fingerprinted using low-level performance met-
rics. Next, PARIS recommends an instance type by matching the
fingerprint of the new workload with previously benchmarked ap-
plications using the performance model.

Cherrypick [9] uses BO with Gaussian processes, a well-known
technique from prior research in hyper-parameter optimization [17],
to perform automatic cloud configuration. Cherrypick targets con-
strained optimization: the goal is to find out the number of in-
stances and types of instances that minimize the execution cost of
the job while satisfying a maximum time constraint.

Arrow [25] uses low-level performance metrics to augment the
BO process. The authors use BO with extra trees to find the best
instance type to minimize execution cost or execution time.

Micky [26] targets the optimal choice of instance type for a group
of workloads while considering execution time or execution cost
objective functions. The goal of Micky is to find a single instance
type that works best for a group of workloads. While Micky allows
users to reduce the optimization cost, the instance type suggested
by Micky will inevitably be sub-optimal for some workloads in the
group, and methods like Cherrypick can be used to optimize further
if needed.

This paper complements these prior works by evaluating the ef-
fect of a larger number of alternative black-box methods and by de-
vising criteria to select the best method in different circumstances.

Scout [27] approaches the problem of cloud configuration dif-
ferently: it builds a relaxed model that uses pairwise classification
to determine whether there are better configurations in the search
space, instead of trying to predict the performance of those con-
figurations accurately. Scout assumes a large amount of historical
data. Approaches like Scout and PARIS optimize the configuration
of a workload by searching for similar workloads that have been
previously modeled. The performance models previously built can
then be used to establish prior information about the performance
of the new workload on the cloud configurations. The techniques
discussed in these papers can be used to find better initial configu-
rations for the optimization algorithms discussed in our work.

Outside of the cloud configuration problem space, there is a large
literature on black-box optimization algorithms. Prior works on
system and software parameter tuning also make use of black-box
optimization algorithms [13,15,37,39]. Several surveys [28,31,33]
provide an overview of several black-box optimization algorithms,
including the ones discussed in this work. Vizier [19] presents
a black-box optimization-as-a-service framework used internally
at Google. It includes algorithms like Bayesian optimization and
CMA-ES [21]. Similarly, there are optimization-as-a-service com-
panies like SigOpt [6] that allow external users to optimize any
model using a proprietary black box optimization engine which is
composed of an ensemble of global and Bayesian optimization al-
gorithms.

3. OPTIMIZATION ALGORITHMS

Since performance models of distributed data processing appli-
cations on different types of cloud instances are not generally avail-
able, we treat this setting as a black box. Given a configuration =
from the configuration search space X and the underlying unknown
model as f, then f(x) is the objective function value of a workload
under consideration when executed on cloud configuration z. The
function f can be used to model objectives like execution time or
total execution cost. The cloud configuration problem seeks to find
2™ such that

x* = argmin f(z) (D
zeX

In our setting, we will be minimizing objective functions. (Maxi-
mizing an objective function is an identical problem.) We assume
that a user has a given optimization budget, i.e., the number of iter-
ations that the optimization algorithm is allowed to make is limited.
This is a common, practical assumption for existing work in cloud
configuration optimization.

There is a wide variety of black-box optimization (BBO) algo-
rithms that have been discussed and defined in the literature [17].
Most of these were created for hyper-parameter optimization. In
this work, we pick a subset of these optimization algorithms based
on both their popularity and, particularly, their optimization budget
requirements. For example, we avoid population-based methods
since they require a higher number of optimization steps.

Below we briefly review a series of black-box optimization meth-
ods that we later evaluate empirically. These can be classified into
three main classes: Sampling-based (Random Search), Sequential
Model-Based (Bayesian Optimization variants, TPE), and Search-
based (Stochastic Hill Climbing and Simulated Annealing).

3.1 Random Search

The random search algorithm simply generates unique configu-
rations by randomly sampling (without replacement) the configu-
ration search space. In random search, new samples are generated
without taking into account the samples that were previously gen-
erated. Thus, the samples generated could be quite close to each
other and in the worst-case scenario concentrated in the same re-
gion of the search space. However, random sampling provides the
benefit of allowing users to generate new samples progressively,
i.e., the number of to-be-tested configurations does not need to be
defined ahead of time.

3.2 Bayesian Optimization (BO)

BO proceeds by maintaining a probabilistic belief about f and
using a function to determine where to evaluate f next (called ac-
quisition function). BO is particularly well-suited to global opti-
mization problems where f is an expensive black-box function. In
our setting, evaluating f entails deploying and running a workload
on a cloud configuration, which is very expensive.

BO reasons about f by starting with a prior p(f). The prior
is the initial belief about the behavior of the objective function.
This prior is based on the surrogate function which is used to build
the model (called a surrogate model S) of the underlying unknown
black-box function. Given the observations D = (z, f(x)), it uses
the Bayesian method to estimate a posterior distribution as:

p(fID) = S(f;nsip,051D)
where 1 is the mean and o is the variance or co-variance.

3.2.1 Surrogate models

There are many options to build a surrogate model; we focus
on the most widely used methods: Gaussian Processes (GP) [36],
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Figure 2: Example of an objective function being modeled by Bayesian
optimization. The objective function is being minimized. The utility
function for each acquisition function is shown along with the recom-
mendation for the next point to evaluate, based on the highest value of
the utility function.

Gradient Boosted Regression Trees (GBRT) [22], Random Forests
(RF) [14] and Extra Trees (ET) [18].

Gaussian Processes (GP): Gaussian processes are generic su-
pervised learning methods that can be used to solve regression as
well as probabilistic classification problems. Gaussian processes
describe probability distributions over a set of functions. The Bayes
rule is used to update this distribution based on training data. After
each observation, the updated Gaussian process is constrained to
the possible functions that fit the training data.

Gradient Boosted Regression Trees (GBRT): GBRT is a flex-
ible non-parametric statistical learning technique. Just like GP, it
can be used for both regression and classification. Boosting works
on the principle of ensemble by combining a set of weak learners to
deliver improved prediction accuracy. Gradient boosting involves
three elements: 1) a loss function, 2) a weak learner to make pre-
dictions (regression trees in our case), and 3) an additive model
(gradient descent) to add weak learners to minimize the loss func-
tion. The regression trees are built one at a time, sequentially. Each
new tree helps to correct errors made by a previously trained tree.
Random Forests (RF): In contrast to GBRT, RF use a bagging
technique for ensemble learning. In bagging (or bootstrap aggrega-
tion), each model in the ensemble is created using a random subset
of the original training dataset, which has the advantage of reduc-
ing variance. Unlike boosting, where trees are built sequentially, in
bagging, each model is built independently, and then the outputs of
each model are aggregated at the end. In this method, each model
is a tree.

Extra Trees (ET): ET (or Extremely Randomized Trees) intro-
duce more variation into the ensemble. Unlike RF, all data is avail-
able for training of each tree and the split of each feature (to form
a node in the tree) is chosen at random. Both features and splits
are chosen at random in contrast to RF where only features are se-
lected at random. This added randomness allows ET to have lower
variance than RF.

3.2.2  Acquisition functions

In BO, the role of an acquisition function is to select the next
configuration to test in order to update the surrogate model. The
acquisition function can be interpreted as a function that evaluates

the expected utility associated with updating f (). BO then selects
the point with the highest expected utility, hence picking the most
desirable point to evaluate F'. Therefore, the acquisition function
A(z) can be represented as the expected utility u(x), given the
configuration x and the previous observations D:

A(z) = E[(u(z)|z, D)]

We now review the most commonly used acquisition functions

and their utility functions. We first introduce them using a toy ex-
ample. Figure 2 shows the surrogate model of some artificial ob-
jective function (shown in blue) built using two initial samples (ob-
servations). The utility function for each acquisition function dis-
cussed below is also shown in the figure. We can see that different
acquisition functions attribute completely different utility and the
next best x to evaluate (illustrated as a star) is based on the highest
value of the respective acquisition function.
Probability of Improvement (PI): Let f’ be the minimum value
of f observed so far; the PI function suggests a value of x that is
most likely to improve upon this value. The utility function for PI
is represented as:

L f@)<f

Expected Improvement (EI): The PI function provides a reward
for improving upon the current minimum that is irrespective of the
margin of improvement. Alternatively, EI also takes into account
the amount of improvement. Hence, the utility function becomes:

u(z) = max(0, f' — f(x))

Thus, the reward is equal to the amount of improvement. Therefore,
the EI acquisition function picks a point with the highest expected
improvement.

Lower Confidence Bound (LCB): The LCB acquisition function
takes the form:

u(z) = {o f@)> 1

Arcp(w; k) = () — Ko (z)

where k > 0 is a trade-off hyper-parameter that can be used to
control exploration and exploitation. o(x) is the standard deviation
and p(x) is the mean. This acquisition function is also called Upper
Confidence Bound (UCB), when used for maximizing an objective
function.
GP hedge: GP hedge [23] chooses one of the three acquisition
functions described above in a probabilistic fashion, based on gains
g. Initially, gains are set to zero. At every iteration, each acquisi-
tion function is optimized independently to get a candidate point
. Out of these candidates, the next point zpes¢ iS chosen based
on a softmax function softmax(ng:). After fitting the surrogate
model with a new observation (Zpest, Yvest ), the gain for each ac-
quisition function is updated as g: = g:—1 + p(x¢). The hyper-
parameter 1 can be used to control the weights assigned to the gain
for each acquisition function. This method is only available when
using Gaussian processes for the surrogate model.

All the above acquisition functions provide a hyper-parameter
to adjust the trade-off between exploitation (evaluating points with
low mean) and exploration (evaluating points with high uncertainty).

3.3 Tree-structured Parzen Estimator (TPE)

Tree-structured Parzen Estimator and Bayesian optimization take
a slightly different approach towards solving the same problem.
While Gaussian process-based approaches model p(y|x) directly
(i.e., y = f(x)), TPE [12] models p(z|y) and p(y) separately. TPE
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essentially divides the sorted observations D = (x, f(x)) accord-
ing to the objective function value into two sets using a threshold
y™. Thus, TPE defines p(z|y) using two such densities:

ol = JUE) Yy <y’
plely) = {g(w) y>y"

where [(x) is the density formed by observations that performed
well and g(x) is the density formed by observations that performed
poorly. TPE algorithms choose y* to be some quantile v of the
observed values y, such that p(y < y*) = . The intuition is that
good configurations will have a low probability in g(z) and a high
probability in I(z). Thus, we can evaluate arg min(g(x)/l(x)) as
the utility function for acquisition functions.

3.4 Stochastic Hill Climbing (SHC)

Stochastic hill climbing is a search based method that does not
rely on modeling the underlying black-box function. In this paper,
stochastic hill climbing works as follows. First the initial configu-
rations X are evaluated to get Yp. The best configuration is picked
from Xy as the current configuration x.. At each subsequent step
a random neighbor of the current configuration is generated. The
current configuration (z.) is then replaced by a random neighbor
(zn) given:

S L p(zn) > 1V p(x,) > random()
cT x. otherwise

where p = e~ (F@n)=f(ze))/T Here, T is a temperature value
that is provided by the user. The formulation for p basically means
that if f(x,) < f(x.) then the neighbor is selected as the cur-
rent configuration. Otherwise, the temperature hyper-parameter
controls the probability of the neighbor being selected as the cur-
rent configuration based on the difference between the objective
function value of the two configurations. Having a higher temper-
ature means that configurations with a significantly worse objec-
tive function value than the current configuration can be selected.
Therefore, a higher temperature allows for more exploration while
a lower temperature allows for more exploitation. If f(x.) is less
than the objective function value of the best configuration x (i.e.,
f(xp)), then . is selected as the best configuration x. The al-
gorithm terminates when one of the following two conditions are
satisfied: a user-specified minimum is reached, or a specified bud-
get is reached.

3.5 Simulated Annealing (SA)

Simulated Annealing is fairly similar to SHC, with the main dif-
ference being the introduction of a cool-down factor for the tem-
perature 7. In particular, for each step ¢ — ¢ + 1 a schedule con-
stant «v is used to lower the temperature as 75411 = «oT;, where
a < 1. Hence, simulated annealing lowers the temperature as the
optimization progresses, therefore shifting the focus from explo-
ration to exploitation later during optimization.

3.6 Excluded BBO methods

The literature on black-box algorithms is vast and there are nu-
merous black-box algorithms used for hyper-parameter optimiza-
tion that we have not included in this work. In particular, CMA-
ES [21] and other evolutionary algorithms such as GGA [10] and
particular swarm optimization [29] are not suitable for the cloud
configuration problem because of the higher budget required for
evolutionary algorithms. Hyperband [30], which is essentially strate-
gic random sampling, is designed for cases where only partial data
can be used for evaluating a configuration. Thus, it is better suited

in cloud configuration scenarios where a single best configuration
for multiple input datasets is the optimization goal.

4. EXPERIMENTAL METHODOLOGY

To experimentally compare the black-box optimization algorith-
ms reviewed in §3, we optimize the cloud configuration of a large
set workloads. We describe our methodology in this section and
present the results in the next section.

Our methodology is carefully designed to establish the statisti-
cal significance of the results and achieve a fair comparison across
algorithms. We proceed as follows:

Decouple optimization from profiling: We compare optimization
algorithms on the basis of their performance on pre-collected pro-
filing datasets comprising the execution time of every workload for
every configuration in the search space. Since our focus is exclu-
sively on the comparison of optimization algorithms, for a given
configuration, we hold its execution time constant and thus, we
avoid biasing our results from the effects of the many sources of
performance variability in cloud environments. Further, this en-
ables us to determine the best configuration in the search space.
Repetitions: For each workload, we run every optimization al-
gorithm 50 times, each time picking a different random set of ini-
tial samples. Repeating the optimization process multiple times is
crucial to assess the overall optimization performance because the
performance of many optimization algorithms depends on the ini-
tial set of random samples.

Initialization consistency: The same set of initial samples is used
across all optimization algorithms in every repetition of an opti-
mization run. This prevents differences in the initial sample sets
from adding variance to the results across different optimization
algorithms and is the basis for a fair comparison thereof.
Statistical significance: We use statistical significance tests to de-
termine whether the mean values of the performance metrics (see
below) vary in a meaningful way from one algorithm to another. In
particular, we use the independent ¢-test [16] (with p < 0.05) from
the family of parametric significance tests.

The remainder of this section provides further details regarding
the algorithm implementations, datasets, and performance metrics.

4.1 Implementation

We implement the black-box optimization algorithms atop sev-
eral widely used libraries. BO methods are built using the SkOpt
library [7], since it provides a range of surrogate models and ac-
quisition functions; TPE is implemented using the Hyperopt li-
brary [4, 11]; SHC and SA are based on the Solid library [8]. To
provide a comparison on common ground, we modified the Solid
library such that SHC and SA start from a set of n initial samples,
instead of a single sample that Solid originally allows. We mod-
ified the optimization libraries to provide different methods with
the same initial samples for a given repetition of the optimization
process.

4.2 Datasets

Table 2 shows an overview of the workloads and configuration
search spaces of the two datasets used in this paper, for a total of
23 workloads.

DS, is provided by the authors of Scout [5]. This dataset in-
cludes execution time information on a set of multi-node work-
loads, for a search space comprising of 69 configurations on which
each workload has been executed. There are a total of 18 work-
loads comprised of 9 different applications and 2 input data sizes
per application. The applications consist of jobs executing within
Spark or Hadoop as listed in Table 2. In DS, the best execution
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Table 2: Workloads and configuration search space for each dataset.

Dataset Workloads [3] Configuration Search Space
Framework Applications Input Size Ir Is N
Hadoop Pagerank (hpr), Terasort (ts), large | 4, 6,8, 10, 12, 16, 24, 32, 40, 48
Wordcount (WC) Huge (H),
DS, Kmeans (km), Naive-Bayes (nb), | Bigdata (B) mé, ¢4, r4
Spark 1.5 - Y ’ & xlarge 4,6,8,10, 12, 16, 20, 24
Regression (reg)
Join (jn), Pagerank (spr),
Spark 2.1 Logistic Regression (If) 2xlarge 4,6,8,10, 12
Linear Regression (Inf) large 16, 24, 32, 40, 48, 56, 64
DS> | Spark2.44 | Latent Dirichlet Allocation (day, | 1iuge (). | m5,m5a, | xlarge 8 12, 16, 20, 24,28, 32
Random Forest (rf) Gigantic (G) | ¢5n, c5,15 | 2xlarge 4,6,8,10,12,14, 16
4xlarge 2,3,4,5,6,7,8

time and execution cost are within 150-2171s and 0.11-2.45 dol-
lars, respectively.

To evaluate the performance of the optimization algorithms over
a larger cloud configuration search space, we generated a second
dataset (DS2) by profiling runs of 5 additional workloads (based
on 3 additional applications) in a configuration search space of 140
configurations. The size of this search space is more than twice the
size of the search space used in Scout [5] (which had 69 configura-
tions) and Cherrypick [9] (66 configurations). To reach this larger
configuration search space, DS5 includes execution time informa-
tion for 20 instance types and 7 cluster sizes for each instance type,
as shown in Table 2. For DS>, the best execution time and execu-
tion cost are within 114-324s and 0.09-0.64 dollars, respectively.

The workloads for both datasets were obtained from Intel’s Hi-
Bench big data benchmark suite [3]. The details about the charac-
teristics of each input size (Huge, Gigantic, and Bigdata) as well
as the applications are included in the public repository of Hi-
Bench [3]. Note that Random Forest failed to run successfully on a
lot of cloud configurations in our search space with Gigantic input
size and it is thus excluded.

Our experiments end up covering 63-69 configurations (out of
69) for DSy and 122-140 configurations (out of 140) for DS5.
The majority of optimization algorithms explore all configurations
across 50 repetitions.

4.3 Evaluation metrics

Since we use 23 different workloads (18 in DS; and 5 in DS5)
for our evaluation, we must resort to aggregate metrics that sum-
marize the results. In particular, we use the following two metrics
in our evaluation to determine the performance of the optimization
algorithms. Hereby, objective function value refers to either ex-
ecution time or execution cost. Comparisons are made using the
minimum of the objective function value (as per Eq. 1) within the
given optimization budget.

Performance Score:  The performance score is calculated by
performing pairwise comparisons between all optimization algo-
rithms. If the difference in the mean of the best objective func-
tion values achieved by two optimization algorithms is statistically
significant, then the performance score of the algorithm with the
lower objective function value is incremented. The pairwise com-
parison is performed for each optimization budget level and across
all workloads. The performance score is aggregated across opti-
mization budgets and workloads in each dataset.

Normalized Performance: The performance score provides an
overall relative ranking of the optimization algorithms. Thus it
helps us determine the best optimization algorithm in a given sce-
nario. However, it does not give information about the actual dif-
ference in the best objective function value achieved by an algo-
rithm compared to others. For that, we use normalized perfor-

mance, which is the best objective function value of each optimiza-
tion algorithm normalized w.r.t. the best algorithm according to the
performance score. If there is no statistically-significant difference
between the performance w.r.t. the best algorithm, then both are
assumed to have the same performance.

5. EXPERIMENTAL RESULTS

Since we have a large number of optimization algorithms and
choices for their hyper-parameters, we first narrow down the field
of optimization algorithms to compare and then perform the com-
parison between those optimization algorithms using different sce-
narios. Thus, we split our analysis into three main parts: (4) the se-
lection of hyper-parameter values for the optimization algorithms,
(i) the evaluation of BO variants, and (i) the evaluation of se-
lected optimization algorithms.

Henceforth, we use the following notation to represent a partic-
ular workload based on Table 2: application;,, ; .- For instance,
Iry represents the linear regression application running with Huge
input data size (preset size in HiBench).

The comparisons are performed across 5 different optimization
budgets (6, 12, 18, 24, 30). The results are based on 50 repeated
runs of the optimization algorithms for each workload using differ-
ent randomized initial sample sets for each run.

To present results succinctly, we omit plots of performance score
values. Instead, in any given scenario, we use the performance
scores to determine the best algorithm. Then, we illustrate per-
formance comparisons using normalized performance graphs (see
Figure 4 as a reference). This kind of graph shows the normal-
ized mean performance of algorithms w.r.t. the best algorithm as
a bar plot associated with the left y-axis while the normalized per-
formance of the best algorithm w.r.t. the best configuration in the
search space is shown as a line plot associated with the right y-axis
of the graph. The error bars represent 95% confidence interval (af-
ter statistical significance is accounted for during normalization).

5.1 Configuring optimization algorithms

Every run of an optimization algorithm in a given scenario is
associated with a certain configuration that comprises of the fol-
lowing hyper-parameters:' the number of initial samples, the seed
to the random generator of initial samples, the optimization budget,
and the algorithm-specific hyper-parameters (see Table 3). We now
analyze the importance and impact of different hyper-parameter
values across algorithms. We use performance scores to pick the
best-performing hyper-parameter values for each algorithm.

"We use the term hyper-parameter to distinguish from the cloud
configuration parameters (N, Ir, Is), which are the output of the
optimization process.
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Figure 3: Importance (through Functional ANOVA) of each hyper-parameter of the optimization algorithms.

Table 3: Algorithm-specific hyper-parameters and their values. For
BO with LCB acquisition function « is used; for EI and PI, ¢ is used.

Algorithm | Hyper-parameters Values
SHC temperature (7°) 50, 100, 250, 500, 750, 1000
SA temperature (1) 50, 100, 250, 500, 750, 1000
schedule constant (o) | 0.3, 0.5, 0.7, 0.9
BO kappa (k) (LCB) 1.0,1.51.96, 3.0, 5.0
£ (EI, PI) 0.01, 0.05,0.1,0.2
TPE Threshold () 0.1,0.25, 0.4, 0.55, 0.7

5.1.1 Importance of hyper-parameters

We use Functional ANOVA [24] to quantify the importance of
each hyper-parameter towards the performance variance of the opti-
mization algorithm. Note that, in the context of Functional ANOVA,
performance variance refers to the variability in the optimization’s
output — the (IV, Ir, Is) tuple — in terms of the effects of variation
due to different hyper-parameter. For each algorithm, in addition
to the algorithm-specific hyper-parameters, we consider the impor-
tance of the initial samples selected (via random seed), the number
of initial samples, and the optimization budget.

Figure 3 shows the fraction of variance (i.e., importance) in the
performance introduced by each hyper-parameter for different opti-
mization algorithms across all 23 workloads and for both objective
functions (execution cost and execution time). For BO, the results
also include the importance across all surrogate models.

The individual contribution of algorithm-specific hyper-parame-
ters towards variance in performance is small compared to those of
initial samples (via random seed) and optimization budget. On av-
erage, algorithm-specific hyper-parameters contribute to less than
5% to the overall variance. The exception is x for BO with LCB
acquisition function, in which case x can contribute up to 10% to
the variance in performance. On the other hand, the selection of
initial samples and the optimization budget contributed up to 65%
to performance variance, individually. The rest of the contribution
is made by the pairwise marginals, which, for readability, are not
shown in these plots.

5.1.2  Best algorithm-specific hyper-parameters

Table 3 shows the algorithm-specific hyper-parameters of dif-
ferent optimization algorithms and their respective values used to
determine the best hyper-parameter settings. To find the best hyper-
parameter setting, we evaluate all possible combinations of hyper-
parameter values and the number of initial samples, for each algo-
rithm on each workload and objective function. Using performance

scores, we determine the best hyper-parameter values for each opti-
mization algorithm across all workloads in a particular search space
(DS1 and DS>) and for a particular objective function (execution
time or execution cost). We see that the best hyper-parameter val-
ues change based on the workloads and type of objective function:
there is no one winner in every scenario. For brevity, we list all of
these values separately in the project repository [2].

In the remainder of this section, we present results based on
the best hyper-parameter values as determined by the performance
scores. Since in a real setting, tuning algorithm-specific hyper-
parameters would require additional optimization runs and that mig-
ht not always be practical or feasible, we also present results us-
ing selected default configuration values for the optimization al-
gorithms. In our implementation, SA and SHC are the only algo-
rithms that do not have a default value for their temperature and
schedule constant hyper-parameters. Therefore, we use the default
value of 0.5 for « and 50 for T'. These values are based on overall
performance across multiple scenarios in our results. These are not
the best hyper-parameter values in every case but they work well
for most cases in our experiments, among the limited set of hyper-
parameter values we tested for aw and 7". In contrast, for BO and
TPE, there exist default values either provided in the libraries or
recommended in literature: HyperOpt uses a default value of 0.25
for ~, and the SkOpt library uses a default value of 0.01 for £ and
1.96 for k. By default, we use these values.

For the default number of initial samples, we use 3 initial sam-

ples for BO methods and 9 for the rest of the algorithms based on
the hyper-parameter evaluation. This means that for an optimiza-
tion budget < 9, SHC, SA, and TPE are essentially equivalent to
random sampling.
Takeaways: Across the algorithm-specific hyper-parameter val-
ues that we have tested, the hyper-parameters individually only
contribute between 1-10% towards the performance variance of
the optimization algorithms, based on a Functional ANOVA analy-
sis. Additionally, there is no one-size-fits-all setting for the hyper-
parameters of these optimization algorithms. This means that while
algorithm-specific hyper-parameter tuning can provide some bene-
fits, the effort for tuning these hyper-parameters might not be worth
the marginal expected gains.

5.2 Narrowing down the choices for BO

We have several choices for acquisition functions as well as meth-
ods to build the surrogate model for Bayesian optimization. In
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Figure 5: Comparison of different Bayesian optimization algorithms.

this section, we narrow down our choices for the best candidate(s)
among the BO variants. In this set of experiments, we fix the val-
ues for the hyper-parameters for each BO variant to the best values
derived from the evaluation in the previous section.

5.2.1 Best acquisition function for BO

First, we evaluate the best acquisition function for each available
method to build surrogate models. As mentioned before, acquisi-
tion functions are used to select the next configuration to test at
each step in the optimization process. When using ET, GBRT, and
RF as surrogate models, we have three choices for acquisition func-
tions: EI, PI, and LCB. When using GP as a surrogate model, we
have the additional choice of using GP hedge.

We compare all the choices of acquisition function for each BO
method on the workloads in both datasets and for both objective
functions. Then, we use the performance score to determine the
best candidate for acquisition function and then normalize the per-
formance of other acquisition functions based on that best candi-
date. Figure 4 presents only three cases in which there is a signif-
icant difference in the performance of different acquisition func-
tions. The figure shows the performance of different acquisition
functions normalized to the best acquisition function in the respec-
tive scenarios (left y-axis). Additionally, the performance of the
best acquisition function w.r.t. the best configuration in the search
space is shown as the line plot (right y-axis).

In all three scenarios shown in Figure 4, only one workload leads
to a significant performance difference. When optimizing for exe-
cution cost on D.S; with GP surrogate model (shown in Figure 4a),
using the EI acquisition function can lead up to 25% lower execu-
tion cost when optimizing for kmg. In Figures 4b and 4c, we see
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the gap in performance because of a different workload, namely
Idan, where using LCB results in up to 17% and 14% better perfor-
mance than other acquisition functions. In all other scenarios, the
difference between the performance of acquisition functions is less
than 5%.

These results suggest that the use of EI as the acquisition func-

tion is not always the best option, thus contradicting some of the
premises assumed by the prior work of CherryPick [9]. Hence-
forth, for each scenario, we use the acquisition function with the
best performance score for that scenario.
Takeaways: There are only a handful of instances where there is
a statistically significant difference in the performance of different
acquisition functions. Generally, the performance difference is less
than 10%, except for three cases out of 46 optimization scenarios
where the difference in the performance between the best acquisi-
tion function and the rest was 14-25%.

5.2.2 Best BO variant

Now that we have determined candidates for the acquisition func-
tion, we will compare the performance of different methods to build
surrogate models using the chosen acquisition function. The nor-
malized performance for different BO variants in different opti-
mization scenarios is presented in Figures 5. Using the perfor-
mance score, we determine that RF(PI) and GBRT(PI) are the best
algorithms to optimize for execution time for DS7 and D.S>, re-
spectively. GBRT outperforms RF on lower budget for D.S; but,
on average, has a slightly higher minimum objective function value
than RF(PI) for high optimization budget (> 24). On the other
hand, When optimizing for execution cost, BO with GP performs
better than other BO variants, with LCB and EI as the best acquisi-
tion functions for DS> and D.S1, respectively.

When optimizing execution time for DSy (Figures 5¢ RF(PI)
provides up to 25% better execution time compared to GP and ET
but overall it is comparable to GBRT(PI). For D.S5 (Figure 5a) us-
ing GBRT(PI) provides upto 9% better execution time, essentially
when optimization budget is small (< 12).

However, choice of model is more important when optimizing
for execution cost (Figures 5d and 5b). GP(EI) and GP(LCB) pro-
vides up to 22% and 26% lower execution for DSs and DS, re-
spectively. The workloads where the choice of BO variant is most
important are Iday (in DS2) and kmg (in DS1).

Figure 6 shows the normalized execution time and execution cost
of different configurations in the search space for the Iday and kmg
workloads. By observing the values of the objective function on the
search space for these two workloads, we recognize that for these
workloads, very few configurations in the search space are close
to optimal in performance. Additionally, these handful of config-
urations that are close to optimal are in the same instance family.
For Idan, there are 10 configurations within 20% of the lowest ex-
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ecution time in the search space, but, when considering execution
cost, the second-best configuration has 20% higher execution cost.
In this case, we can conclude that optimizing for execution cost
is much harder than optimizing for execution time and those are
the scenarios in which BO(GP) performs better. By observing how
BO(GP) explores the search space in this case, we deduce that com-
pared to other BO variants, GP initially performs more exploration
than exploitation and often tests cloud configurations with different
instance families early on during the optimization process. Fig-
ure 7 shows the average number of instance families explored by
each algorithm for workloads in both datasets when optimizing for
execution cost. We can see that BO(GP) samples at least one con-
figuration from each instance family more quickly than other BO
variants. This leads BO(GP) to find a potentially better configura-
tion when initial samples do not have good configurations in them.
It also makes BO(GP) less susceptible to taking several steps near
local minima.
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Figure 7: Number of instance families explored by GBRT and GP when
optimizing for execution cost.

The latter is exactly why GP performs better than GBRT on
kmg when optimizing for execution cost. Figure 6¢ and 6d show
that good configurations for execution cost and execution time are
pretty similar in the search space. However, the key difference is
the fact that when optimizing for execution cost there is a large lo-

2571

< <
© ©
8w 5 8 %
Se “ 8 g ‘g
T s Ba 5
52 3 & se s &
53 £ 2% £
£ 2 s €EX s S
z28 28 =
o P
g 2
@ P
2 _, 2 1
B33t Ty E EEREE A S
Instance Type Instance Type
(a) BO(GBRT) (b) BO(GP)
Figure 8: Configurations tested by GBRT and GP when optimizing for

execution cost kmpg.

BN BL MWW RF EEN ET BN GBRT mm GP
2000 600
. .
S 2 400
i 1000 ui
200
ae mae rmse a‘e mée rrﬁse
Error Metric Error Metric
(a) DS1: Execution time (b) DS2: Execution time
10!
10!
& 100 g 100
w w
107t 10-1
ae mae rmse ae mae rmse

Error Metric Error Metric

(¢) DS1: Execution cost (d) DS>: Execution cost
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cal minima when using the m4 family. Figure 8 shows a full run of
GBRT and GP (using LCB acquisition function) when optimizing
for execution cost for kmg. The annotated configurations represent
the configurations that have been explored by the optimization al-
gorithm (for optimization budget of 18). The configurations tested
by GBRT are clustered together as GBRT is doing more exploita-
tion based on the 3 initial samples (labeled 1-3). On the other hand,
GP tests a configuration in the r4 family on the fourth run and then
proceeds to explore more configurations in that family later on.
This allows GP to explore the good configurations, which are all
in the r4 family in this case.

Henceforth, we show the results with the best performing vari-

ants based on each surrogate model for BO, for each optimization
scenario.
Takeaways: Based on our evaluation, GBRT(PI) performs well
when optimizing for execution time on both of the search spaces.
RF(PI) outperforms GBRT(PI) in some cases with high optimiza-
tion budget for DS;. On the other hand, GP is the better BO variant
when optimizing for execution cost, with EI and LCB as the best
performing acquisition functions for DS7 and D.S», respectively.

5.2.3 Model accuracy

One of the benefits of using a BO algorithm is that it builds the
surrogate model of the underlying black-box function. If this sur-
rogate model is accurate, then it can be used to predict the value
of the black-box function on unexplored points. We now evaluate
the prediction accuracy of the models built by BO algorithms. As a



baseline (BL), we use a method that randomly samples the search
space and always predicts the mean objective function value.

The models are built using each method after collecting 30 sam-
ples and then the objective function value for each configuration in
the search space is predicted. Figure 9 shows the prediction error
for different BO algorithms for three different error metrics. The
error metrics shown are Absolute Error (AE), Mean Absolute Er-
ror (MAE), and Root Mean Squared Error (RMSE). The box plots
comprise of data points that represent the mean value of error met-
rics for each workload in the dataset. Statistical significance is cal-
culated between the baseline and BO methods. If the difference
is not statistically significant, then the mean value is assumed to
be the same between the two algorithms. Otherwise, the original
mean value is used. Interestingly, we observe in Figure 9 that the
models built by BO optimization are not always more accurate than
our naive baseline predictor.

A counter-intuitive result here is that GP and GBRT have lower

prediction error for execution time (Figure 9a and 9b) and exe-
cution cost (Figure 9c and 9d), respectively. This is despite the
fact that, as shown in (§5.2.2), the ranking of the two algorithms
is switched when it comes to the more general task of finding opti-
mal solutions: GBRT is better for execution time and GP performs
better for execution cost. We leave a thorough analysis of the re-
lationship between model accuracy and optimization performance
for future work.
Takeaways: Higher model accuracy is not necessarily a predictor
for optimization performance. We also observe that the models
created using BO methods are often not much more accurate than
the simple baseline predictor that always predicts the mean of a set
of randomly sampled cloud configurations.

5.3 Which optimization algorithm is better?

Now that we selected the best candidates from BO variants, we
can compare them against the other optimization algorithms we dis-
cussed in Section 3. Just like the previous section, we compare both
the execution time and the execution cost objective functions.

5.3.1 Optimizing for execution time

Figure 10 shows the comparison of different optimization algo-
rithms when optimizing for execution time. We present the results
for the scenario where we use the best algorithm-specific hyper-
parameter values mentioned in Section 5.1.2 and a scenario where
default hyper-parameter values are used. For DS; (shown in Fig-
ures 10a and 10b), BO with GBRT(PI) is the best candidate with
tuned hyper-parameter values and BO with RF(PI) is only slightly
better with the default. Using the best algorithms for execution time
optimization of DS provides up to 20% lower execution time. But
in most cases, the benefit is less than 10%.

GBRT(PI) remains the best optimization algorithm for D.S> (as

shown in Figures 10c and 10d), with or without hyper-parameter
tuning. With tuned hyper-parameters for all optimization algo-
rithms, GBRT(PI) provides up to 10% better execution time com-
pared to Random and LHS, but only up to 5% compared to the
rest of the algorithms. Similar performance differences exist when
using the default hyper-parameter values.
Takeaways: In most cases, BO with GBRT and PI acquisition
function is able to find configurations with lower execution time
than other methods. GBRT(PI) outperforms other algorithms with
default as well as tuned values for hyper-parameters. However,
RF(PI) performs slightly better than GBRT(PI) for an optimization
budget of > 24 runs.

5.3.2  Optimizing for execution cost

Using execution cost as the objective function to optimize also
changes the characteristics of the search space, as previously shown
in Figure 6. Therefore, in addition to using execution time as the
objective function, we also want to compare different optimization
algorithms using execution cost as the objective function. We have
previously determined that the best optimization algorithm among
the BO variants is GP instead of GBRT when optimizing for exe-
cution cost in our optimization scenarios.

As shown in Figure 11, when optimizing for execution cost, the
performance differences between the best optimization algorithm
and the rest are much more pronounced. When optimizing for exe-
cution cost for workloads in D.S1, using GP(EI) provides up to 29%
and 40% lower execution cost than other algorithms with tuned and
default hyper-parameters, respectively.

As shown in Figures 11c and 11d, the benefits of using GP(LCB)

are more apparent when optimizing for workloads in the larger
search space (D S2). The performance benefit of using GP(LCB) is
up to 40%.
Takeaways: The best optimization algorithm based on our results
does not change with using either the default or tuned values for
algorithm-specific hyper-parameters. The difference in the perfor-
mance of optimization algorithms is much more pronounced when
optimizing for execution cost and particularly when optimizing for
execution cost on the large search space of D.S,.

5.4 What is the best method for online opti-
mization?

Prior work in choosing cloud configurations concentrates on of-
fline optimization: the user waits until the completion of the opti-
mization runs before deploying the workload in a production set-
ting. However, that might require a lengthy offline benchmarking
phase, which may not be feasible in some deployments. In this
section, we evaluate an alternative online scenario, in which a user
tests different configurations during production runs. In this case,
the problem is that testing configurations online may lead to exces-
sively long execution times for the production runs.

To evaluate this scenario, we assume the existence of a thresh-
old beyond which the execution time obtained with a configura-
tion is considered a violation to a service level objective (SLO).
For configuring the various optimization algorithms, we use the
respective default acquisition functions, as mentioned in the prior
sections. For the values of algorithm-specific hyper-parameters,
we use & = 0.01, x = 1.0, and v = 0.1, since, among the
hyper-parameter values we have tested, these values provide the
highest emphasis on exploitation rather than exploration. Empha-
sis on exploitation would mean that optimization algorithms would
perform more conservatively, searching for better configurations in
the vicinity of already known good configurations, and thus leading
to fewer objective function value violations.

Figure 12 shows the average number of violations during opti-
mization across all workloads in DS and DS>. The threshold
is marked in the figure as a normalized runtime threshold, i.e., a
threshold of 1.5 means that any configuration that leads to an ob-
jective function value that is more than 1.5 the minimum in the
search space is considered a violation. Optimization algorithms
that test configurations with widely different execution times result
in a larger number of violations and are therefore less suitable for
online optimization.

We run the optimization algorithm for 30 iterations. We will as-
sume that the three initial samples are executed offline even with
online optimization, so they are not counted as violations. We
can see in Figure 12 that BO methods have fewer violations than
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Figure 10: Comparison of optimization algorithms when optimizing for execution time using tuned or default algorithm-specific hyper-parameters.
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Figure 11: Comparison of optimization algorithms when optimizing for execution cost using tuned or default algorithm-specific hyper-parameters.
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Figure 12: Aggregate number of SLO violations for varying thresholds
(as a factor of the objective function value of the best configuration
in the search space). Each optimization algorithm is using the default
algorithm-specific hyper-parameter values.

other optimization algorithms. BO variants have up to 2x fewer
violations compared to Random search, SHC, SA, and TPE. We
also analyzed the performance of the optimization algorithms with
these configurations values and the findings from previous sec-
tions still hold true. In particular, BO(GP) and BO(GBRT) provide
the best optimization performance when optimizing for execution
cost and execution time, respectively. Similarly, in the latter case,
BO(GBRT) is closely matched by BO(RF) when the optimization
budget is high.

Takeaways: = When doing online optimization using the hyper-
parameter values that emphasize exploitation, BO variants cause
up to 2x fewer performance constraint violations, on average, com-
pared to other algorithms, especially Random Search and SHC. The
reason is that Random Search and SHC inherently lack an objective
function model.

Table 4: Number of extra periodic repetitions of the workload required
in production to break-even with the time and cost of optimization
when optimizing for execution time and execution cost, respectively.

Execution time Execution cost
Algorithm (min-mean-max) (min-mean-max)
DS, DSy DSy DS>

Random 71-361-1261 | 88-329-578 69-275-858 80-178-364
SHC 72-257-703 55-312-717 66-396-1521 | 98-195-365
SA 66-276-815 54-214-432 66-326-1016 | 89-167-262
TPE 50-263-1065 | 56-326-1008 | 66-265-946 45-110-234
BO(ET) 51-234-647 59-151-282 35-240-1997 | 55-152-249
BO(RF) 34-207-706 42-136-270 11-305-4436 | 38-148-242
BO(GBRT) | 27-291-812 54-235-616 23-243-2003 | 37-99-154
BO(GP) 56-267-877 61-157-302 12-275-2112 | 44-109-217

5.5 When are more optimization runs worth
the extra cost?

Cloud configuration optimization is generally targeted towards
periodic workloads. Therefore, it is important to understand how
many periodic runs are required to break-even with the extra cost
and time required for performing the optimization runs. In this
section, we will present these break-even points for our workloads.
We generate the break-even points using a ratio between the cost or
time it takes to do more optimization runs and the improvement in
the objective function value as a result of those extra runs:

Cost(zpits) — Cost(zpr)
fxw) — f(@biys)

where f (a:bl) and f ($b1+s) are the best objective function value
after running the optimization for baseline optimization budget bl
(bl = 6 runs) and for budget bl plus extra s steps, respectively.
In turn, the cost function C'ost(z) is the monetary and time cost of
doing optimization runs when optimizing for the execution cost and
execution time objective functions, respectively. This ratio gives us
the number of additional production runs that are necessary to fully
amortize the increment in the optimization costs.

Table 4 shows the min, mean and max values for the number of
extra production runs of workloads required to break even. The
table presents summary statistics that provide an overall picture of
the extra runs that are required across all workloads in a dataset for
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Figure 13: Decision tree for selecting an optimization algorithm.

a given objective function. The more detailed statistics for indi-
vidual workloads can be found in the accompanying code and data
repository [1]. The results show that a job may have to be repeat-
edly executed anywhere between a dozen times to a few thousand
times to justify further optimization. Therefore, depending on the
frequency with which a workload is executed, it might or might not
be worth spending more time optimizing the cloud configuration.
On average, BO variants require fewer extra runs of the workload to
break-even, thus providing more improvement for a given increase
in the optimization budget.

Takeaways: BO variants provide lower mean break-even points
than other algorithms for both the execution time and execution
cost objective functions. Hence, they provide more improvement
given a fixed extra optimization budget compared to other opti-
mization algorithms such as SA, SHC, TPE, and Random Search.

5.6 Summary

Overall, one of the main conclusions is that BO outperforms
other optimization algorithms that we have evaluated. Algorithm-
specific hyper-parameter tuning is less important than the choice
of the initial samples and optimization budget. We found no clear
best setting of hyper-parameter values (especially the number of
initial samples) for any of the algorithms: the best setting varies
across workloads and objective functions. For Bayesian optimiza-
tion variants, different acquisition functions perform similarly in
most cases, but overall PI works well when optimizing for execu-
tion time and LCB is better when optimizing for execution cost.
BO with GBRT and PI acquisition function is able to outperform
other algorithms by up to 20% and 10% when optimizing for exe-
cution time for DS, and D Sa, respectively. BO with GP and LCB
provides up to 40% better performance when optimizing for exe-
cution cost in both DSy and DS3. According to our evaluation,
BO variants also provide fewer constraint violations for online op-
timization and more improvement in the objective function value
as a result of a marginal increase in the optimization budget.

6. CHOOSING A BLACK-BOX OPTIMIZA -
TION ALGORITHM

Figure 13 shows the decision tree based on the evaluation in this
work. For offline optimization, if the objective function is execu-
tion time, then BO with GBRT(PI) is the best choice. Whereas
for execution cost, the preferred choice is BO with GP(LCB). For
online optimization, we found that BO variants in our experiments
had fewer constraint violations, which can be a critical aspect of an
online optimization algorithm. Specifically, RF(PI) and GP(LCB)
have a lower average number of violations when optimizing for ex-
ecution time and execution cost. Therefore, BO with RF(PI) is a
better choice for online optimization, not only because of having a
lower average number of constraint violations but also because it

can perform comparably to the best algorithm for execution time
optimization, i.e., BO with GBRT.

7. DISCUSSION

In this section, we will discuss orthogonal techniques that can be
used in addition to the methods we have discussed in this work.

Early termination techniques to timeout likely bad cloud con-
figurations can be used to decrease the time and monetary cost of
optimization. These enhancements have not been included in our
evaluation because they can be incorporated into many of the op-
timization algorithms and thus are not a factor that can be used to
differentiate one optimization algorithm from another.

Workload fingerprinting, along the lines of [27,38], can be used
by all BO algorithms as a prior, but it has an extra cost associ-
ated with it. We did not consider fingerprinting in our evaluation
to provide a fairground of comparison across BO and non-BO al-
gorithms. The evaluation already shows that BO is often superior,
even without fingerprinting.

In a cloud environment, we can execute multiple optimization
runs at the same time, thus parallelizing the optimization process.
Random sampling is easier to parallelize than sequential optimiza-
tion algorithms such as the BO variants described in this paper.
With random sampling, virtually all configurations can be tested
independently of each other. It allows users to deploy and run a set
of clusters and stop the rest of the optimization runs when the best
configuration has been found. Bayesian Optimization also has par-
allel variants [20, 32, 35]. The evaluation of the effectiveness and
efficiency of these parallel optimization algorithms is an interesting
avenue for future work.

8. CONCLUSION

In this work, we evaluate the performance of many popular black-
box optimization algorithms in the context of choosing cloud con-
figurations. We evaluated 8 algorithms and 23 workloads using 2
objective functions. Our evaluation showed that algorithm-specific
hyper-parameter tuning is less important than the choice of the ini-
tial samples and the optimization budget. We found no clear set of
optimal hyper-parameter values for any of the algorithms. While
some existing works have used Bayesian optimization with Gaus-
sian processes and Bayesian optimization with extra trees, our eval-
uation suggests that there is no silver bullet. Bayesian optimization
with GBRT and GP perform better when optimizing for execution
time and execution cost, respectively. We also examine the prob-
lem of finding optimal cloud configurations in an online setting and
perform a break-even analysis to evaluate when performing more
optimization runs is worth it.
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