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ABSTRACT
Linearizability is the strongest known consistency property
of shared objects. In asynchronous message passing systems,
Linearizability can be achieved with 3S and a majority of
correct processes. In this paper we introduce the notion
of Eventual Linearizability, the strongest known consistency
property that can be attained with 3S and any number of
crashes. We show that linearizable shared object implemen-
tations can be augmented to support weak operations, which
need to be linearized only eventually. Unlike strong opera-
tions that require to be always linearized, weak operations
terminate in worst case runs. However, there is a tradeoff
between ensuring termination of weak and strong operations
when processes have only access to 3S. If weak operations
terminate in the worst case, then we show that strong op-
erations terminate only in the absence of concurrent weak
operations. Finally, we show that an implementation based
on 3P exists that guarantees termination of all operations.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliablity—Fault-tolerance;
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; F.2.m [Theory of Computation]:
Analisys of Algorithms and Problem Complexity

General Terms
Algorithms, Design, Reliability, Theory
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1. INTRODUCTION
Shared objects are a useful abstraction in the design of

concurrent systems. A concurrent system consists of a set of
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sequential processes communicating through shared objects.
A shared object can be made tolerant to process failures by
storing a copy of the shared object at each process and by
having the processes coordinate their actions to implement
a certain degree of consistency. The more consistent the
local copies are kept, the easier it is to design a distributed
application using the replicated object.

The strongest consistency property is Linearizability [13],
which provides the illusion that each operation applied to
the shared object takes effect instantaneously at some point
between its invocation and its response. In this way, the
processes have the impression of interacting with a “cen-
tralized” object that executes all operations in a sequential
order consistent with the real time ordering of operations.
Linearizability, however, can be achieved if and only if con-
sensus can be solved. In an asychronous message-passing
system, consensus can be solved assuming a failure detector
of class 3S, or the equivalent class Ω, and a majority of
correct processes [6]. If these conditions are not met, a lin-
earizable implementation blocks, becoming unavailable [5].

In many real world applications, availability is impera-
tive, and therefore blocking is unacceptable [8, 9, 11]. In
practice, processes often issue operations that do not need
to be linearized. We call these operations weak as opposed
to strong operations that must be linearized. Ideally, weak
operations applied to a shared object should terminate ir-
respective of the failure detector output or of the number
of faulty processes. To this end, it is acceptable that weak
operations violate Linearizability when the system deviates
from its “normal” behavior, but only if such violations cease
when the anomalies terminate [12, 1]. We call this property
Eventual Linearizability.

Shared objects with Eventual Linearizability can be used,
for example, in master-worker applications to implement the
master. Consider a replicated real-time queue used to dis-
patch taxi requests to taxi cabs [12]. Some degree of redun-
dant work, such as having multiple cabs respond to the same
call, can be accepted if this prevents the system from becom-
ing unavailable in presence of anomalies, guaranteeing that
cabs can always dequeue requests. However, no redundant
work should take place when there is no anomaly.

In this paper we address the following question: Is it pos-
sible to achieve these desirable properties of weak operations
without sacrificing Linearizability and termination of strong
operations? We answer this question in the negative. In
fact, combining Linearizability and Eventual Linearizability
requires using a stronger failure detector to complete strong
operations than the one sufficient for Consensus.

We introduce the notion of Eventual Linearizability for



weak operations, which is the strongest known consistency
property that can be attained with 3S despite any number
of crashes. Eventual Linearizability guarantees that Lin-
earizability is violated only for a finite time window. It satis-
fies the same locality and nonblocking properties as Lineariz-
ability. We show that Eventual Linearizability for weak op-
erations cannot be provided using existing notions of Even-
tual Consistency [20, 25, 10]. With Eventual Consistency,
in fact, Linearizability can be violated whenever multiple
operations are invoked concurrently. Therefore, Eventual
Consistency never ensures Linearizability.

We introduce a primitive, called Eventual Consensus, that
we prove to be necessary and sufficient to implement Even-
tual Linearizability. Eventual Consensus is strictly weaker
than Consensus, since it can be implemented with 3S de-
spite any number of faulty processes. Inputs to Eventual
Consensus are operations proposed by processes, and out-
puts are sequences of operations. Informally, Eventual Con-
sensus requires that after some unknown time t, all oper-
ations proposed after t are totally ordered at each process
before being output.

Beyond introducing and formalizing Eventual Lineariz-
ability and Eventual Consensus, we study whether Consen-
sus implementations can be extended to provide Eventual
Consensus without degrading their properties.

We present a shared object implementation, called Au-
rora, which provides Linearizability for strong operations
and Eventual Linearizability for weak operations using the
Eventual Consensus primitive. For high availability, Aurora
ensures termination and Eventual Consistency for weak op-
erations in asynchronous runs. Aurora also preserves causal
consistency [14]. Unlike other weakly consistent implemen-
tations such as Lazy Replication [15] and Bayou [23], Aurora
additionally implements Eventual Linearizability for weak
operations in runs where processes have access to a failure
detector of class 3S. In this case, strong operations ter-
minate in the absence of concurrent weak operations if a
majority of correct processes exists. Finally, if the processes
have access to a failure detector D of class 3P, then all op-
erations terminate even in presence of concurrency. Aurora
is a gracefully degrading algorithm because it requires dif-
ferent degrees of synchrony to achieve different consistency
semantics. In particular, it degrades Eventual Linearizabil-
ity to Eventual Consistency only in periods where Consensus
would block due to the absence of a single leader process.

It may seem unnecessary that Aurora requires a stronger
failure detector than a Consensus algorithm to terminate
strong operations. We show, perhaps unexpectedly, that this
reflects a fundamental tradeoff. Specifically, we show that
with 3S, it is impossible to ensure termination of strong
operations with a majority of correct processes and at the
same time to achieve Eventual Consensus and termination
of weak operations with a minority of correct processes.

Interestingly, at the heart of circumventing the impossi-
bility lies the ability to eventually tell if consensus will ter-
minate, which is possible with 3P but impossible with 3S.
This seems to be a fundamental and unexplored difference
between the two classes of failure detectors. On the other
hand, a strongly complete failure detector is sufficient to
eventually detect that consensus will not terminate.

Summary of contributions and outline.
We distinguish between strong operations, which must be

linearized, and weak operations, which need to be linearized

only eventually. For the latter, we introduce and formal-
ize the Eventual Linearizability correctness condition (Sec-
tion 3). We show that Eventual Linearizability is stronger
than Eventual Consistency but equivalent to Eventual Con-
sensus (introduced in Section 4). Next, we study the in-
herent tradeoffs of combining Linearizability and Eventual
Linearizability (Section 5). First we show an impossibil-
ity result that limits the design space of eventually lineariz-
able implementations (Section 5.1). Finally, we present a
shared object implementation called Aurora that combines
Linearizability and Eventual Linearizability (Section 5.2).
In asynchronous runs, Aurora gracefully degrades to Even-
tual Consistency. In this paper we present our main results,
referring the reader to [21] for further details and proofs.

2. RELATED WORK
Previous work has studied how to extend Linearizability

with weaker consistency properties. Eventual Serializability
requires that “strict” operations and all operations preced-
ing them be totally ordered at the time of their response,
while other operations may only be totally ordered after
their response [10]. Most existing systems implementing op-
timistic replication provide variations of this property, often
called Eventual Consistency [20, 25]. As we show, Eventual
Consistency is weaker than Eventual Linearizability. Timed
Consistency strengthens sequential consistency by setting a
real-time bound ∆ after which operations must be seen by
any other process [24]. If ∆ = 0 the specification is equiv-
alent to Linearizability. If not, Timed Consistency allows
completed operation to remain invisible to subsequent op-
erations, similar to Eventual Consistency. In this case, our
result can be easily extended to show that Timed Consis-
tency is not stronger than Eventual Linearizability. Like
Eventual Serializability, Hybrid Consistency requires strong
operations to be linearizable with each other but relaxes
the ordering between pairs of weak operations [2]. Zeno ex-
tends Byzantine-fault tolerant state machine replication to
guarantee availability and Eventual Consistency for weak
operations in presence of partitions [22]. Zeno appears to
achieve Eventual Consensus in some “good” runs. However,
Zeno relaxes Linearizability for strong operations. In fact,
processes invoking weak operations are allowed to observe
concurrent strong operations in different orders.

A number of distributed systems, including modern highly-
available data center services such as Amazon’s Dynamo [9],
the Google File System [11] and Yahoo’s PNUTS [8] allow
trading Linearizability for availability in presence of parti-
tions, which occur between geographically remote data cen-
ters as well as inside data centers [25]. A survey on many
practical weakly consistent systems is [20]. A drawback of
weakly consistent systems is that they are notoriously hard
to program and to understand [4]. Authors of [1] argue, with
motivations similar to ours, that many systems aim at being
“usually consistent”. They propose a quantitative measure,
called consistability, to study the tradeoffs between perfor-
mance, fault-tolerance and consistency.

There is a large body of work on weak consistency se-
mantics for distributed shared memories having read/write
semantics. For a survey we refer to [19]. Eventual Lineariz-
ability is an eventual safety property that can be combined
with any of these safety properties. For example, Aurora
has a causal consistency property that allows implement-
ing causal memories [14]. Refined specifications of graceful



degradation and corresponding implementations for trans-
actions taking snapshots of the state of multiple objects are
presented in [26].

3. DEFINITIONS
In this section we first define a model of concurrent exe-

cutions. Next, we define Eventual Linearizability and show
that, like Linearizability, it is local and nonblocking.

3.1 Model of concurrent executions
We consider concurrent systems consisting of a set of pro-

cesses {pi | i ∈ [0, n − 1]} accessing a set of shared objects.
Processes interact with objects through operations. An exe-
cution is a history consisting of a finite sequence of operation
invocation and response events taking place at a process and
referring to an object. Invocations contain the arguments of
the operation, while responses contain the results of the op-
eration. All operations are unique and are ordered in the
history according to the time of their occurrence. We as-
sume the presence of a global clock providing a time refer-
ence for the whole system, which starts from 0 and is often
referred to as real-time order. Processes do not have access
to this clock. Given a history H and a process pj (resp. an
object x), we denote H|j (resp. H|x) as the restriction of H
to call and response events of pj (resp. on x).

A history is sequential if (i) the first event is an invoca-
tion, (ii) all invocation events, except possibly the last, are
immediately followed by the response event for the same op-
eration, and (iii) response events are immediately preceded
by the invocation event for the same operation. A sequential
history H is legal if, for each object x, H|x is correct accord-
ing to the sequential specification of x. We denote the order
of operations defined by a sequential history H as <H . A
sequential permutation of a history H is a sequential history
obtained by permuting the events of H. A history that is not
sequential is called concurrent. An operation is called com-
pleted if the history includes an invocation and a completion
event for it. For a history H, we denote completed(H) as
the subsequence of events in H related to all completed op-
erations. A history is well-formed if the subhistory of events
of each process is sequential. We assume all histories to be
well-formed.

3.2 Definition of Eventual Linearizability
Eventual linearizable implementations need to always en-

sure some minimal weak consistency property that rules out
arbitrary behaviors. For each history H, we require that the
response to every completed operation o of every process pi
is the result of a legal sequential history τ(i, o). The his-
tory τ(i, o) must terminate with o, it must consist only of
operations invoked in H before o is completed, and it must
include all operations observed by pi before o.

Formally, a history H is weakly consistent if, for every
process pi and operation o completed by pi in H, there exists
a legal sequential history τ(i, o) such that: (i) the last event
in τ(i, o) is a response event of o having the same result as
the response event of o in H, (ii) every operation invoked in
τ(i, o) is also invoked in H before o is completed, and (iii) for
each operation o′ invoked by pi before o, τ(i, o′) ⊆ τ(i, o).1

This definition of weak consistency is very generic. It al-
lows processes to ignore operations of other processes. Fur-

1We abuse the ⊆ notation to indicate that the set of opera-
tions of τ(i, o′) is included in the set of operations of τ(i, o).

thermore, subsequent serializations observed by a process
can reorder previously-observed operations. Eventual Lin-
earizability can be combined with stronger weak consistency
semantic than this. For example, in Section 5.2 we show that
it is possible to combine Eventual Linearizability with causal
consistency [14].

Eventual Linearizability requires all operations that are
invoked after a certain time t to be ordered with respect to
all other operations according to their real-time order. Pairs
of operations invoked before t can be ordered arbitrarily.
This requirement on the order is formalized by the following
relation. Let H be a history and t a value of the clock. We
define the irreflexive partial order<H,t as follows: o1 <H,t o2
iff o2 is invoked after t and the response event of o1 precedes
the invocation event of o2.

A t-permutation P of a history H is a legal sequential
history that orders operations of H according to <H,t. The
results of operations in P do not have to match with those of
the corresponding operations in H. Formally, the following
two properties must hold for a legal sequential history P to
be a t-permutation of H: (P1) an operation o is invoked in P
if and only if o is invoked in H; (P2) <H,t⊆<P . It is worth
noting that every well-formed history H has a t-permutation
P for each value of t. However, not every well-formed history
has a linearization as defined in [13].

Eventual Linearizability is a property of histories that may
initially be weakly consistent but that eventually start be-
having like in a linearization. We formalize this constraint
as follows. A t-linearization L of a history H is defined as
a t-permutation where the results of all operations invoked
after t are the same as in H. Operations invoked before t
may have observed inconsistent histories that do not corre-
spond to any single legal sequential history. A history H is
t-linearizable if there exists a t-linearization of H. Note that
all well-formed histories having a linearization also have a
t-linearization.

We can now define Eventual Linearizability as follows.

Eventual Linearizability: An implementation of a shared
object is eventually linearizable if all its histories are
weakly consistent and t-linearizable for some finite and
unknown time t.

Linearizability differs from Eventual Linearizability be-
cause the convergence time t is known and equal to zero.
In general, any form of t-linearizability where t is known
can be easily reduced to Linearizability in systems where
processors have access to a local clock with bounded drift.
This is why we consider more general scenarios where t ex-
ists but is unknown. It is worth noting that, different from
t-linearizability, Eventual Linearizability is a property of im-
plementations, not of histories. In fact, all finite histories
are trivially t-linearizable for some value of t larger than the
time of their last event. Showing Eventual Linearizability
on an implementation entails identifying a single value of t
for all histories.

We show that Eventual Linearizability has two fundamen-
tal properties of Linearizability. Locality implies that any
composition of eventually linearizable object implementa-
tions is eventually linearizable. Nonblocking requires that
there exist no history such that every extension of the his-
tory violates Eventual Linearizability.

Theorem 1. Eventual Linearizability is nonblocking and
satisfies locality.



4. IMPLEMENTATIONS
Eventual Linearizability only requires that operations are

linearized eventually. It can thus be implemented using
primitives that are weaker than Consensus. In this Section
we identify which properties must be satisfied by these prim-
itives. We focus on weak operations where Eventual Lin-
earizability is sufficient. Strong operations are introduced in
Section 5. Many weakly consistent implementations provide
properties such as Eventual Serializability [10] or Eventual
Consistency [20, 25]. We show that these properties are not
sufficient to implement Eventual Linearizability, and there-
fore define a stronger problem, called Eventual Consensus,
that is stronger than Eventual Consistency but weaker than
Consensus. We finally show that Eventual Consensus is nec-
essary and sufficient to implement Eventual Linearizability.

4.1 System model for implementations
In this section we consider shared object implementations

using an underlying consistency layer to keep replicas consis-
tent. If Linearizability is required for all operations then the
consistency layer implements Consensus. The specifications
defined in this section refer to properties of consistency lay-
ers, unlike Eventual Linearizability which is a property of
shared object implementations. For simplicity, we restrict
our discussion to implementations of a single shared object.

We model the interface of the consistency layer with two
types of events: submit events, which are input events in-
cluding as input value an operation on the shared objects,
and delivery events, which are output events returning a se-
quence of operations on the shared object. We denote as
S(i, t) the last sequence delivered to process pi at time t > 0
and define S(i, 0) to be equal to the empty sequence for each
i. We assume that the processes interacting with the shared
object can fail by crashing. If pi is crashed at time t, S(i, t)
is the last sequence delivered by pi before crashing. We say
that a submitted operation terminates when it is included
in a sequence that is delivered at each correct process.

The consistency layer itself is implemented on top of an
asynchronous message passing system with reliable channels.
Implementations can use failure detectors [6, 5]. A failure
detector D is a module running at each process that out-
puts at any time a set of process indices [6]. In this paper
we consider four classes of failure detectors. The class Ω in-
cludes all failure detectors that output at most one process
at each process pi, which is said to be trusted by pi, and en-
sures that eventually a single correct process is permanently
trusted by all correct processes [5]. The class of strongly
complete failure detectors, which we denote C, includes all
failure detectors that output a set of suspected processes and
that ensure strong completeness, i.e., eventually every pro-
cess that crashes is permanently suspected by every correct
process [6]. The classes of eventually strong (resp. even-
tually perfect) failure detectors 3S (resp. 3P) include all
strongly complete failure detectors having eventually weak
accuracy (resp. eventually strong accuracy), i.e., eventually
some correct process is (resp. all correct processes are) not
suspected by any correct process [6].

4.2 Eventual Consistency and Eventual Con-
sensus

Our formalization of Eventual Consistency builds upon
the properties of Eventual Serializability [10] and Eventual
Consistency [20] and is expressed in terms of a weakened
form of Consensus. Like Eventual Serializability, we allow

processes to temporarily diverge from each other on the or-
der of operations and to eventually converge to a total or-
der. Eventual Serializability supports defining precedence
relations with each operation to constraint their execution
order. These relations are typically used to specify causal
consistency [10, 15]. Since we focus here on Eventual Con-
sistency properties, these aspects are orthogonal to our dis-
cussion and are abstracted away.

Eventual Consistency: A consistency layer satisfies Even-
tual Consistency if the following properties hold.

Nontriviality: For any process pi and time t, every
operation in S(i, t) has been invoked at a time t′ ≤
t and appears only once in S(i, t);

Set stability: For any process pi, if t ≤ t′ then each
operation in S(i, t) is included in S(i, t′);

Prefix consistency: For any time t there exists a se-
quence of operations Pt such that:
(C1) For any correct process pi, Pt is a prefix of
S(i, t′) if t ≤ t′;
(C2) Pt is a prefix of Pt′ if t ≤ t′;
(C3) Every operation o submitted at time t′ by a
correct process is included in Pt′′ for some t′′ ≥ t′.

Note that property (C3) of prefix consistency implies Live-
ness, i.e., for any correct processes pi and pj and time t, ev-
ery operation submitted by pi at time t is included in S(j, tj)
for some tj ≥ t.

This definition of Eventual Consistency is a relaxation
of Consensus on sequences of operations [18].2 Consensus
requires the same nontriviality and liveness properties as
Eventual Consistency, but requires stronger stability and
consistency properties. Stability requires that for any pro-
cess pi, S(i, t) is a prefix of S(i, t′) if t < t′. Consistency
requires that for any processes pi and pj and time t, one of
S(i, t) and S(j, t) is a prefix of the other.

Set stability allows reordering the sequence of operations
returned as an output, provided that all operations returned
previously are included in the new sequence. Prefix consis-
tency allows replicas to temporarily diverge in a suffix of op-
erations. However, it requires eventual convergence among
all replicas on a common prefix Pt of operations. Prop-
erty (C1) of prefix consistency says that a common prefix Pt
of operations has been delivered by each replica; (C2) con-
straints this prefix to be monotonically increasing; (C3) en-
sures that all completed operations are eventually included
in the common prefix.

Eventual Consistency is not sufficient to implement Even-
tual Linearizability not even for simple read/write registers,
as shown in Theorem 2.

Theorem 2. An eventually linearizable implementation
of a single-writer, single-reader binary register cannot be
simulated using only an eventually consistent consistency
layer.

The intuition for this result can be given by a simple ex-
ample. Consider two processes p0 and p1 that share one
single-writer, single-reader binary register holding a current
value 1 at a given time t. Assume that p0 is the writer of the
register and p1 is the reader. Process p0 invokes a write0(0)

2We consider here the case where all processes are proposers
and learners. We also trivially modify nontriviality to rule
out sequences with duplicates.



execute(o, H): returns the result of executing the sequence H
up to and including the operation o;

upon invoke (o)
curr ← o;
submit(o);

upon deliver(H)
if curr 6= ⊥ ∧ curr ∈ H then

r ← execute(curr, H);
curr ← ⊥;
complete (o,r);

Algorithm 1: An eventually linearizable implementation of a
generic object using Eventual Consensus.

append(o): appends an operation o at the end of the sequence;
read(): returns the current value of the sequence;

upon submit (o)
append(o);

upon periodic tick
H ← read();
deliver (H);

Algorithm 2: Solving Eventual Consensus using an eventu-
ally linearizable implementation of an append/read sequence
object.

operation after t. After this operation is completed, process
p1 invokes a read1() operation. Prefix consistency allows the
consistency layer to delay convergence to a common prefix
Pt for an arbitrarily long time. Before completing read1(), p1

may thus not distinguish this run from a run where write0(0)
was never invoked. Therefore, read1() returns the previous
value 1. A consistent ordering Pt of these two operations can
be delivered by the consistency layer of both processes after
both operations are completed. This is sufficient to satisfy
Eventual Consistency. Such a pattern can occur after any
finite time, making t-linearizability impossible for any t.

The key to achieve Eventual Linearizability is in strength-
ening stability. Assume in the previous example that the
consistency layer is not allowed to change the order of the
operations it has delivered after t. p0 can complete its opera-
tion only after the consistency layer delivers a sequence con-
taining write0(0). In order to prevent the consistency layer
of p0 from reordering its delivered sequence, the first non-
empty consistent prefix Pt′ must include write0(0). This im-
plies that the consistency layer of p1 has to deliver write0(0)
before read1() in order to preserve stability. p1 can thus ex-
ecute this sequence and return 0, respecting linearizability.
In other words, an Eventually Consistent consistency layer
satisfying eventual stability must eventually start to deliver
all operations in a total order before the operations are com-
pleted. This total order also includes all the operations that
have been submitted before t.

The previous example gives us the insight for the defini-
tion of Eventual Consensus. Different from Eventual Con-
sistency, the delivered sequences eventually stop reordering
operations that were previously delivered.

Eventual Consensus: A consistency layer satisfies Even-
tual Consensus if Eventual Consistency and the follow-
ing additional property hold:

Eventual Stability: There exists a time t such that
for any times t′ and t′′ with t ≤ t′ ≤ t′′ and for
any process pi, S(i, t′) is a prefix of S(i, t′′).

Implementing Eventual Consensus is both necessary and
sufficient to achieve Eventual Linearizability for generic ob-
jects as shown in Theorem 3. This result reduces the prob-
lem of obtaining eventually linearizable shared object im-
plementations to the problem of implementing a consistency
layer satisfying Eventual Consensus.

Theorem 3. Eventual Consensus is a necessary and suf-
ficient property of a consistency layer to implement arbitrary
shared objects respecting Eventual Linearizability.

Algorithm 1 shows the sufficiency part of the result. When-
ever an operation is invoked, it is submitted to the consis-

tency layer. The operation is then completed as soon as a
sequence containing the operation is delivered. The returned
sequence is executed and the result is returned in a comple-
tion event. Before stability eventually holds, nontriviality
and set stability are sufficient to satisfy weak consistency. As
discussed in the previous register example, eventual stability
ensures that processes eventually start delivering operations
in the same total order, which is identified by the consistent
prefix Pt, before the operations are completed. This allows
implementing Eventual Linearizability.

Necessity is shown by Algorithm 2, which uses a shared
sequence having an append and a read operation. Whenever
an operation is submitted, it is appended onto the sequence.
The object is periodically read and its value is delivered.
The weak consistency property of the sequence is sufficient
to ensure nontriviality and set stability. When the object
starts to be eventually linearizable, all reads and appends
are totally ordered in a legal sequential history. This en-
sures that eventually all operations are included in the same
total order, as required by prefix consistency, and that read
sequences that are delivered are never reordered in the fu-
ture, as required by eventual stability.

5. COMBINING LINEARIZABILITY AND
EVENTUAL LINEARIZABILITY

We distinguish between strong operations that need to be
linearized and weak operations that require to be eventually
linearized. Strong operations are delivered only if Consensus
is reached on the prefix including them as last operation.
This is called a strong prefix. We extend the specification of
Eventual Consensus accordingly.

Strong prefix stability: For any process pi, time t, strong
operation s and sequence π, if π s is a prefix of S(i, t)
and t′ ≥ t then π s is a prefix of S(i, t′).

Strong prefix consistency: For any processes pi and pj,
time t, strong operations si and sj and prefixes πi and
πj, if πi si is a prefix of S(i, t) and πj sj is a prefix of
S(j, t) then one of πi si and πj sj is prefix of the other.

If all operations are strong, Eventual Consensus is equiv-
alent to Consensus. One would desire to achieve termina-
tion of weak operations in all runs together with termina-
tion of strong operations in runs where Linearizability can
be achieved. In this Section we discuss impossibility and
possibility results on this topic.

5.1 Impossibility result
In this section we show that even if a 3S failure detector is

given for termination of weak operations, strong operations



cannot terminate in runs where consensus can be solved (see
Theorem 4).

The intuition behind the impossibility lays in the concur-
rency between weak and strong operations. We construct
an infinite run where some strong operation s is never com-
pleted. For this, we consider an Eventual Consensus layer
ensuring stability after a time t in a run where all events
occur after the time t. Assume that a strong operation s is
submitted by a correct process and that the processes are
trying to reach consensus on a strong prefix π s. Let a submit
event for an operation w 6∈ π occur at a correct process pi
before consensus on π s is reached. Process pi cannot know
whether consensus will terminate or not, as it accesses only
failure detector 3S, but it must deliver weak operations in
either case. Therefore, pi cannot wait until consensus on π s
is reached before delivering w. pi is thus forced to deliver w
before consensus on π s is reached. When consensus on π s is
reached, eventual stability forbids pi to deliver π s because
w is not in π. Therefore, consensus needs to be reached on
a new strong prefix ϕs with w ∈ ϕ. However, a new weak
operation w′ may be submitted before consensus on ϕs is
reached. This pattern can be repeated forever. As a result,
the strong operation s is never completed even if consensus
can be solved.

This result highlights an implicit tradeoff in implement-
ing Eventual Linearizability. As a consequence of our im-
possibility result, shared object implementations using 3S
can ensure Eventual Linearizability and give up termination
of strong operations in presence of concurrent weak oper-
ations. Alternatively, they can choose to violate Eventual
Linearizability in order to ensure termination of both weak
and strong operations. In the latter case, it follows from our
result that Eventual Linearizability can be violated when-
ever there are concurrent weak and strong operations.

In the proof of the following theorem we describe asyn-
chronous computations in terms of events as in [3]. Input
events submitting operation o at pi are denoted as submiti(o).
An output event occurs when a sequence π is delivered. An
operation is delivered when a sequence containing it is deliv-
ered. Message receipt events occur when a process receives
a message. The occurrence of these events at a process pi
might enable the occurrence of computation events at pi,
which might in turn result in pi sending new messages.3 We
say that a message m is causally dependent on an event e
if the computation event that generated m is causally de-
pendent on e according to the classical definition of Lam-
port [16].

Theorem 4. In a system with n ≥ 3 processes out of
which f can crash, it is impossible to implement a consis-
tency layer that satisfies the following properties using a fail-
ure detector 3S: (P1) termination of weak operations; (P2)
termination of strong operations if f < n/2; and (P3) Even-
tual Consensus.

Proof. Assume by contradiction that a consistency layer
satisfying properties (P1), (P2) and (P3) exists. Let pro-
cesses be partitioned into two sets, Πm of size b(n − 1)/2c
and ΠM of size d(n + 1)/2e. By (P3), there exists a time t
after which eventual stability holds for each run. Consider
all runs where no process fails and where the 3S modules
of all processes suspect ΠM . We build one such run σ that

3If a process sends a message to itself, then the receipt of
this message is considered as a local computation event.

begins with an event submith(s), with ph ∈ ΠM occurring
after time t, where s is a strong operation. σ is an infinite
and fair run that is built using an infinite number of finite
runs σk with k ≥ 0 in which s is never delivered by any pro-
cess, thus violating (P2). Each run σk with k > 0 is built
by extending σk−1. The run σ is the result of an infinite
number of such extensions. Run σ is fair by construction
because all messages sent in σk−1 are received in σk, and
because all enabled computation events occur.

Let Mk be the set of messages that are sent, but not yet
received, in σk. For each σk, we show by induction on k
the following invariant (I): No process delivers s in σk or
in any extension of σk where (i) all processes in ΠM crash
immediately after σk, and (ii) all messages in Mk sent by
processes in ΠM are lost.

We first consider the case k = 0 and define σ0 is as fol-
lows. Let submith(s) be the first and only input event of
the system. Assume that no process crashes in σ0. Assume
also that no message is received in σ0 and that all enabled
computation events occur. Let M0 be set of initial messages
sent in σ0.

It is easy to see that (I) is satisfied in σ0. Since only
a strong operation has been submitted, delivering s entails
solving consensus on s by definition. Property (I) directly
follows from the facts that no message is received in σ0 and
that consensus cannot be solved using 3S in any extension
satisfying conditions (i) and (ii) since f ≥ dn/2e (see proof
in [6]).

For the inductive step, we now define how σk is con-
structed for k > 0 by extending σk−1. Assume that no
process crashes in σk and that 3S permanently suspects
ΠM . Let an event submiti(wk) occur at a process pi ∈ Πm

after σk−1, where wk is a weak operation that has never
been submitted earlier. Let process pi eventually deliver a
sequence ϕk at a time tk such that wk ∈ ϕk and s 6∈ ϕk. As-
sume that no event occurs at any process in ΠM after σk−1

and before tk. Assume that all messages in Mk−1 sent by
processes in ΠM (resp. Πm) are received by processes in Πm

(resp. ΠM ) in σk but after tk . Let all enabled computation
events occur. Finally, assume that all messages sent after
σk−1 are included in Mk and are not received in σk.

We first show that the construction of σk is valid by show-
ing that tk and ϕk exist. We construct an extension of σk−1

called σE1. Assume that in σE1 all processes in ΠM crash
immediately after σk−1 (i.e., before submiti(wk)) and 3S
suspects ΠM at all processes. Assume that all messages in
Mk−1 that are sent by processes in ΠM are lost. By prop-
erty (P1), and since 3S permanently satisfies weak accuracy,
process pi eventually delivers a sequence ϕk with wk ∈ ϕk
at time tk. Therefore, ϕk and tk exist. As σk−1 satisfies (I),
process pi cannot deliver s in σE1 because all messages in
Mk−1 sent by processes in ΠM are lost. This implies that
s 6∈ ϕk. Since process pi cannot distinguish σk and σE1 up
to tk, ϕk is delivered by pi at time tk in σk too.

We now show the inductive step, i.e., that σk satisfies
(I). Assume by contradiction that a sequence π s εd for some
sequences π and εd is delivered for the first time by a process
pd in σk or in an extension of σk respecting (i)-(ii). As s was
not delivered in σk−1, sequence π s εd is delivered after σk−1

and, by the argument above, also after tk.
Consider first the case pd ∈ Πm. Let σE21 be an extension

of σk where pd delivers π s εd and let t′k be the time when this
delivery occurs. Let all processes in ΠM crash immediately
after σk and let all the messages sent by processes in ΠM



sent after σk−1 to processes in Πm be lost. Finally, let 3S
return ΠM at all processes. From eventual stability and
since pi has already delivered at time tk < t′k a sequence ϕ
such that wk ∈ ϕ but s 6∈ ϕ, it follows wk ∈ π.

We now consider a run σE22 where the same events as in
σE21 occur until time t′k but no process crashes before t′k. All
processes in Πm crash immediately after t′k. All messages
sent from processes in Πm to processes in ΠM after σk−1 are
lost. Assume that after t′k, 3S eventually returns Πm at all
processes in ΠM . pd cannot distinguish σE21 and σE22 until
t′k, so it delivers π s εd at time t′k in σE22 too. As all processes
in ΠM are correct, they must eventually deliver a sequence
containing s by (P2). From strong prefix consistency and
strong prefix stability, this sequence must have π s as prefix
with wk ∈ π.

Finally, consider a run σE23 that is similar to σE22 but
where the submiti(wk) event does not occur. Let all pro-
cesses in Πm crash at the same time as in σE22, and let all
messages sent by processes in Πm after σk−1 be lost. Assume
that no other process crashes. Let the outputs of 3S be at
any time the same as in σE21. Runs σE21 and σE22 are indis-
tinguishable for the processes in ΠM , which thus eventually
deliver a sequence having π s as a prefix with wk ∈ π. How-
ever, wk has never been submitted in σE23. This violates
nontriviality, showing that pd 6∈ Πm.

Next, consider the case pd ∈ ΠM . By assumption, (I)
holds so pd must deliver π s εd in σk. Let t′′k be the time when
this occurs. Consider an extension σE31 of σk where no pro-
cess crashes. By (P2), all processes must eventually deliver
a sequence containing s. By strong prefix consistency, all
processes must eventually deliver a sequence having π s as
prefix. By eventual stability, since pi has already delivered
at time tk a sequence ϕk including wk and not s, it must hold
wk ∈ π. Before t′′k , process pd cannot distinguish σk from a
similar run σE32 where submiti(wk) does not occur. In fact,
pd does not receive any message before t′′k that is causally
related with submiti(wk). At time t′′k , therefore, pd delivers
π s εd with wk ∈ π in σE32 too, a violation of nontriviality.
This ends our proof that σk satisfies (I).

The infinite run σ can be built iteratively by extending
σk as it has been done with σk−1. The resulting run is fair
by construction because all messages in Mk−1 are delivered
in σk and no computation event is enabled forever without
occurring. During the whole run no process crashes. Ac-
cording to (P2), s should be delivered in a finite prefix of
σ. By construction, however, each finite prefix τ of σ is also
prefix of a run σk′ for some k′. From the invariant (I), s is
never delivered in σk′ , a contradiction. 2

5.2 A gracefully degrading implementation
In this section we introduce Aurora (Figure 1), an al-

gorithm implementing Eventual Consensus and thus, from
Theorem 3, Eventual Linearizability. Aurora shows that
Eventual Consensus can be implemented with any num-
ber of correct processes using 3S, still ensuring termination
of weak operations and Eventual Consistency in worst-case
asynchronous runs. The algorithm also shows that causal
consistency can be combined with Eventual Consensus.

Failure detectors and communication primitives.
Aurora ensures termination of weak operations and Even-

tual Consistency in asynchronous runs. To this end, Aurora
uses a failure detector module D ∈ C, which outputs the set
of indices of the processes that have been suspected to crash.

Virtually all failure detector implementations are of class C
in asynchronous runs. The key property of Eventual Consen-
sus, eventual stability, is achieved by letting a leader order
all operations. For this we require that D ∈ 3S ⊆ C, while
for termination of strong operations we assume D ∈ 3P ⊆
3S. This models the fact that even if Aurora optimistically
relies on additional synchrony in order to achieve Eventual
Consensus, the algorithm falls back to Eventual Consistency
to ensure termination of weak operations in runs where Con-
sensus would not terminate, including asynchronous runs.
The use of 3P to complete strong operations is a conse-
quence of Theorem 4. For simplicity, we use ΩD to denote
a simulation of a leader election oracle ensuring the proper-
ties of Ω on top of D in runs where D ∈ 3S similar to [7].
The simulation ensures that the leader trusted by ΩD is not
suspected by D. We call the process that is permanently
trusted by D when D ∈ ΩD the permanent leader.

Processes use two communication primitives: a reliable
channel providing send and receive primitives, and a (uni-
form) FIFO atomic broadcast primitive providing abcast and
abdeliver primitives [3]. Implementing atomic broadcast is
equivalent to solving consensus [6]. We consider atomic
broadcast implementations that use a failure detector Ω and
a majority of correct processes for termination and that al-
ways respect their safety properties [17, 6]. The algorithm
assumes that a predefined deterministic total order relation-
ship <D exists. For simplicity, the algorithm sends and de-
livers whole histories although it is simple to optimize this
away [10]. Garbage collection can be executed by periodi-
cally issuing strong operations for this purpose [22].

Properties of the Aurora algorithm.
Similar to weakly consistent implementations such as [15,

23], Aurora ensures termination of weak operations, causal
consistency and Eventual Consistency if D ∈ C. If D ∈ 3S,
Eventual Consensus is implemented. Termination of strong
operations is ensured if D ∈ 3P or, in absence of concurrent
weak operations, if D ∈ 3S. All proofs are available in [21].

Checking if consensus will terminate.
A direct consequence of Theorem 4 is that if a leader pld

has started consensus on a strong prefix π s and it receives a
weak operation w afterwards, it needs to distinguish whether
consensus will terminate. If this is the case, w must wait
to be ordered after π s once consensus is reached. Else, w
must be immediately be delivered since consensus will not
terminate, and thus the strong operation will have to wait
before being completed. Consensus will terminate if eventu-
ally there exists a stable majority of correct processes per-
manently trusting pld.

4

Aurora uses trust messages to let pld know which processes
trust it. Whenever ΩD outputs a new leader pj at a process
pi, pi sends a TRUST(j) message to all processes through
FIFO reliable channels. Each process pi keeps a trusted-by
set TB including the indices of all the processes pj such that
TRUST(i) is the last trust message received by pi from pj .
This processing of trust messages is not included in Figure 1.

The leader uses the trusted-by set and a failure detec-

4We call a stable majority a majority quorum that does
not change over time. The weakest failure detector to solve
consensus, which is Ω, requires that eventually all correct
processes permanently trust the same correct process pld.
We show in [21] that Ω can be simulated if eventually a
stable majority of correct processes permanently trusts pld.



tor of class C to stop waiting for consensus unless consen-
sus terminates. When a consensus instance is started, the
leader remembers the subset T of TB that is composed only
by correct processes (according to D). Even in worst-case
runs where D ∈ C, T will eventually include only correct
processes. If T never changes and is a majority quorum,
then there exists a majority of correct processes permanently
trusting the leader. Consensus on π s will thus eventually
terminate, so the leader can wait to order and deliver w un-
til this happens. The wait-consensus predicate is defined to
reflect the aforementioned condition.

From Theorem 4, having a failure detector 3S, so a single
leader, and a majority of correct processes is not sufficient
to implement the properties of Aurora. The leader needs to
eventually detect that such majority exists, which is ensured
if D ∈ 3P. This eventually lets the predicate wait-consensus
be true whenever a consensus instance is ongoing, a sufficient
condition for termination of strong operations. In fact, T
will eventually be equal to the set of correct processes.

Note that if there is no concurrency between weak and
strong operations, termination can be guaranteed for all op-
erations without the need for distinguishing whether con-
sensus can terminate.

Processing weak operations.
The processing of weak operations is described by Algo-

rithm 3. When a weak operation o is submitted at a pro-
cess pi, pi sends it in a weak request message to the current
leader pld and waits for an answer from the leader. In order
to preserve causal consistency, a weak request of pi also con-
tains its current history H and an associated round counter
d which will be explained later. H contains all operations
causally preceding o. When a weak request message m is
received by pld, it merges its local history with the one re-
ceived in m before adding o to its local history. This is done
in order to preserve causal consistency. We will discuss the
details of the merge operation (see Algorithm 4) later on.

If the leader has proposed a strong prefix and is waiting to
deliver it, it might wait until consensus on it is completed.
This occurs if the leader thinks that consensus can be solved
and therefore wait-consensus is true. In this case, the leader
stores the request in the set W and waits until the strong
prefix is delivered or wait-consensus becomes false. When
pld processes the weak request, it sends a push message con-
taining its local history, including also o, back to pi. When
pi receives the push message, it merges the history of pld
with its own history to order o respecting the causal depen-
dencies of all the operations ordered by the leader before o.
The resulting history contains o and is now delivered by pi.

As already discussed, wait-consensus eventually becomes
false unless consensus can be solved. Also, if pld is crashed,
the failure detector will eventually suspect it. In the lat-
ter case, process pi knows that no permanent leader is yet
elected so eventual stability cannot yet be achieved. There-
fore, pi locally appends o to its current local history and
delivers it without further waiting for a push message.

Processing strong operations - Overview.
The handling of strong operations is described by Algo-

rithm 5 and is more complex. For eventual stability, if there
is a permanent leader pld then strong operations should be
delivered according to the order indicated by pld. However,
we cannot rely on a leader to be permanent for strong prefix
stability and consistency.

The properties of strong operations imply that delivering
a strong prefix π s requires solving consensus on π s. Equiv-
alently, processes can propose strong prefixes by atomically
broadcasting them and using some deterministic decision cri-
teria to consistently choose one proposal. The main impli-
cation of Theorem 4, however, is that processes cannot just
deliver the first strong prefix π s proposed by a leader pld,
even if this pld uses atomic broadcast. In fact, as long as pld
believes that atomic broadcast will not terminate, it might
have delivered some weak operation w 6∈ π before being able
to abdeliver π s. In this case, pld cannot deliver π s for even-
tual stability and it needs to propose a new prefix for s.

Processes need to decide when a proposed strong prefix
can be delivered because it is stable, i.e. it has been ab-
delivered by atomic broadcast and no weak operation has
been delivered in the meanwhile. Establishing that a prefix
is stable is a local decision of a leader pld. The problem
now is how pld can communicate this local decision and let
other processes agree on its decision in presence of concur-
rent proposals from multiple leaders. If pld just atomically
broadcasts that a prefix is stable, this creates again the same
problem as before: all processes would have to wait that a
stability confirmation from the leader is successfully broad-
cast before delivering the strong prefix. In the meanwhile,
pld might locally store and deliver some new weak operation.

The problem of multiple concurrent leaders is solved in
Aurora by using rounds and identifying a single leader as
the winner of each round. Processes store the current round
k and deliver a single strong prefix at each round. Leader
processes that receive a new strong operation atomically
broadcast the strong operation in a proposal message for
the current round. The leader whose proposal is the first
one to be atomically delivered for a round is the winner of
that round. The winner of a round can propose multiple
new strong prefixes for the round. These are received in
the same order as they are abcast by the leader since the
broadcast primitive is FIFO.

Assume that a proposed strong prefix becomes stable at
the winner of the current round, that is, the winner abde-
livers the stable prefix and sees that it is consistent with its
current local history. The winner can now safely decide to
locally store the strong prefix in its local history, deliver it,
and stop sending proposals for the round. The winner ab-
casts in this case a close round message indicating that the
other processes can deliver its last proposed strong prefix for
the round. A process abdelivering a close round message m
for the current round delivers the last strong prefix proposed
by the winner for that round and abdelivered before m. To
ensure liveness in case a winner crashes, each process that
suspects the winner of the current round can send a close
round message.

Since proposal and close round messages are atomically
broadcast, it is evident that all processes that did not win
a round abdeliver the same strong prefix π for that round.
Consistency with a winner of a round that has delivered
a stable strong prefix based only on a local decision is en-
sured as follows. The prefix π is contained in the last pro-
posal message m abdelivered by the winner, and thus by any
other process, for the round, and it is not preceded by any
close round message for the same round. Even if the win-
ner crashes, all close round messages for the round will be
abdelivered after m, ensuring consistency with the winner.

Eventually, only the permanent leader sends proposal and
close round messages. This ensures that eventual stability is



upon submit (o) and o is weak
ld ← ΩD;
send WREQ(H, d op) to pld;

upon receive WREQ(H′, d′, op′) from j
if wait-consensus and (H′, d′, op′) 6∈ W then

add (H′, d′, op′) into W ;
else

(H, d) ← merge(H′, d′, H, d);
if op′ 6∈ H then append op′ onto H;
send PUSH(H, d) to pj ;

upon receive PUSH(H′, d′)
(H, d) ← merge(H′, d′, H, d);
deliver(H);

upon suspect-ld
append last locally submitted weak operation onto H;
deliver(H);

upon stop-waiting-consensus
foreach (H′, d′, op′) ∈ W do

(H, d) ← merge(H′, d′, H, d);
if op′ 6∈ H then append op′ onto H;
send PUSH(H, d) to pj ;
remove (H′, d′, op′) from W ;

Algorithm 3: Handling of weak operations

upon periodic tick
send PUSH(H, d) to all other processes;

function merge(H′, d′, H, d)
dnew ← max(d, d′);
if d = dnew then Hnew ← longest strong prefix of H;
else Hnew ← longest strong prefix of H′;
O ← set of weak operations in (H′ ∪H) \Hnew;
R ← order O according to <H ∪ <H′ and break cycles
according to <D;
append R onto Hnew in R order;
return (Hnew, dnew);

Algorithm 4: Background dissemination and merge

upon submit (o) and o is strong
send SREQ(H, d, op) to all processes;

upon receive SREQ(H′, d′, op) from j
(H, d) ← merge(H′, d′, H, d);
add op into N ;

upon must-propose-new-prefix
S ← N \H;
Q ← H;
T ← TB \ D;
abcast PROP(Q, S, k);

upon abdeliver PROP(H′, S, k′) from pj

if from-round-winner then
P ← (H′, S, k′, j);

if proposal-stable then
foreach op ∈ S in <D order do

append op onto H;
d ← k;
deliver(H);
abcast CLOSE-RND(k′);

upon suspect-round-winner
abcast CLOSE-RND(k′);

upon abdeliver CLOSE-RND(k′) from pj and P = (∗, ∗, k′, ∗)
P ← ⊥;
Q ← ⊥;
k ← k′ + 1;
let H′ and S′ be such that P = (H′, S′, k′, h);
Hnew ← H′;
foreach op ∈ S′ in <D order do

append op onto Hnew;
(H, d) ← merge(Hnew, k′, H, d);
deliver(H);

Algorithm 5: Handling of strong operations

wait-consensus
4
= Q 6= ⊥ and must-propose-new-prefix

4
= i = ΩD and N \H 6= ∅ and

T = TB \ D and |T | > n/2 (Q = ⊥ or H 6= Q)

suspect-ld
4
= ld 6= ΩD and last locally submitted from-round-winner

4
= (P = ⊥ and k′ = k) or P = (∗, ∗, k′, j)

weak operation is not in H proposal-stable
4
= j = i and P = (∗, ∗, k′, i) and

stop-waiting-consensus
4
= W 6= ∅ and ¬ wait-consensus H′ = H and k′ = k > d

suspect-round-winner
4
= P = (∗, ∗, k′, j) and j 6= ΩD

Figure 1: The Aurora algorithm for process pi.

reached. Furthermore, if a majority is present in the system
and D ∈ 3P, eventually wait-consensus will be true during
ongoing rounds of strong prefixes. This ensures that the
leader eventually only adds weak operations between two
rounds, ensuring termination of strong operations.

Processing strong operations - Detailed description.
In Algorithm 5, all processes keep two round counters: k

stores the last round number of a proposed strong prefix, or
the next round number if a prefix has just been delivered
for a round; d denotes the highest round number for which
a strong prefix has been stored in the local history. A sub-
mitted strong operation o is sent to all processes in a strong
request message. When a process receives such a message,
it adds o to the set N containing all strong operations that
have been received by the process.

If a process pi believes to be a leader, it can make a pro-
posal for a round if it has operations in N that have not yet
been locally delivered and thus not yet inserted in the local
history H. The sequence Q stores the last prefix that was
proposed by pi as a prefix of some new strong operation in

the current round. A proposal is done by pi only if pi has
not yet sent any proposal for the round, so Q = ⊥,5 or if
a prefix has been proposed by pi but some weak operations
has been added to the local history H in the meanwhile so
H 6= Q (must-propose-new-prefix predicate). The proposal
message contains H and the set S = N \ H of new strong
operations.

If a new proposal message from the round winner is ab-
delivered, it is stored in the record P . If the winner decides
that a proposal is stable, it stores it in H, delivers it, sends
a close round message to all, and updates d. A close round
message is also sent by any process that suspects the current
round winner to be faulty. Whenever a close round message
for the current round is received, the corresponding strong
prefix is delivered. Before delivering a strong prefix, this
is merged in the local history as described in Algorithm 4.
The merge operation gives as result a history containing the
strong prefix delivered in the largest round. All remaining
weak operations are ordered after this prefix.

5The symbol ⊥ denotes the value “undefined”.



Background dissemination and merge.
In order to eventually converge to the same history, pro-

cesses periodically send push messages to all other processes
(Algorithm 4). The push mechanism is not only used to
achieve Eventual Consistency. The permanent leader of a
run uses push messages to fetch the histories of all processes
and to aggregate them in a single consistent history. This
is the key to achieve eventual stability. Strong prefix con-
sistency and strong prefix stability are preserved by merges
because, by construction, the longest strong prefix stored in
a history H for round d is a prefix of the longest strong prefix
stored in a history H ′ for round d′ if d ≤ d′. Causal con-
sistency is preserved because all merged histories preserve it
by construction. The merge only reorders operations that
are ordered inconsistently in the two input histories. These
operations, however, cannot be causally dependent. Incon-
sistent orderings of operations are eventually propagated to
all processes and deterministically ordered using the <D re-
lation. This is the key to eventual stability and consistency.

6. CONCLUSIONS
In this paper, we have presented Eventual Linearizability

and a related problem, Eventual Consensus. We have estab-
lished that combining Eventual Consensus with Consensus
comes at the price of using a stronger failure detector than
3S, which is sufficient for Consensus. Finally, we have pre-
sented Aurora, a gracefully-degrading shared object imple-
mentation extending Consensus with Eventual Consensus.
Aurora only degrades consistency in periods when Consen-
sus would block. It uses a failure detector of class 3P to
tell if Consensus will terminate, and one of class C to detect
that Consensus will not terminate.
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APPENDIX
In this Appendix we first show the locality and nonblocking
properties of Eventual Linearizability (Appendix A). We
then show that Eventual Consensus is necessary and suffi-
cient to implement of Eventual Linearizability, while Even-
tual Consistency is not sufficient (Appendix B). Finally, we
show the correctness of the Aurora protocol (Appendix C).

A. LOCALITY AND NONBLOCKING
In this section we show that Eventual Linearizability in-

herits the most relevant properties of Linearizability as it
is both local and nonblocking. Locality ensures that if every
object of a system is eventually linearizable, then the system
itself is also eventually linearizable. Being nonblocking im-
plies that the specification of Eventual Linearizability does
not result in runs where some process can not make progress
any longer.

In order to define locality we need an additional defini-
tion. An object subhistory H|x of an object x is the history
composed by all events in H referring to x. We say that a
history H is (t, L)-linearizable if L is a t-linearization of H.

In the following two lemmas, we prove that weakly consis-
tency and t-linearizability are local properties, which imply
the locality of Eventual Linearizability.

Lemma 1. If a history H is weakly consistent then, for
each object x, H|x is weakly consistent. If H|x is weakly
consistent for each object x, then H is weakly consistent.

Proof. Given that H is weakly consistent, we know that,
for every process pi and operation o completed by pi in H,
there is a legal sequential history τ(i, o) which fulfills (i)-(iii).
If o is an operation of x, then H|x and τ(i, o)|x also fulfill
(i)-(iii). Otherwise, o is not invoked in H|x. Therefore, H|x
is also weakly consistent.

On the other hand, given that H|x is weakly consistent
and τ(i, o) fulfills (i)-(iii) for every process pi and operation
o completed by pi in H|x, o is also completed in H by the
same process and τ(i, o) is legal sequential history of H too.
Therefore, H is also weakly consistent. 2

Lemma 2. If a history H is t-linearizable then, for each
object x, H|x is t-linearizable. If H|x is tx-linearizable for
each object x, then H is tmax-linearizable with tmax = max∀x(tx).

Proof. It is evident from the definitions that if H is t-
linearizable then H|x is t-linearizable for each object x. In
fact, if L is a t-linearization ofH, then L|x is a t-linearization
of H|x and all response events in L|x after t have the same
results as in H|x. Therefore, H|x is (t, L|x)-linearizable for
each object x.

In order to prove the second implication, we assume that
for each x, H|x is tx-linearizable. Let Rx be the response
events added to H|x to build the tx-linearization Lx of H|x,
and H ′ the history obtained from appending all events of
Rx to H. Let <x be the total order of all operations in H|x
defined by Lx, and < be a relation built as the transitive
closure of

S
∀x <x ∪ <H,tmax . Assuming that < is a par-

tial order, we can build a tmax-linearization L of H which
respects <. For each x, all operations on x are ordered in
L as in Lx. This implies that the results of the response
events in L are the same as in L|x. Since H|x is (tx, L|x)-
linearizable, all response events of H after tx ≤ tmax have

the same results as in L, so H is (tmax, L)-linearizable and
thus tmax-linearizable.

We now show that < is a partial order. Assume by con-
tradiction that o1 < . . . < on and on < o1, where < can be
either <x for some x or <H,tmax , and assume that this is a
cycle with minimal length in <. If all these operations are
on the same object x, then they are totally ordered by <x.
The existence of a cycle implies that there must exist two
operations oi and oj on x such that oi <x oj and oj <H,tmax

oi. This contradicts with (P2) as <x is the order of a tx-
linearization Lx of H|x and (P2) implies that <H,tx⊆<x.
This and <H,tmax⊆<H,tx imply that <H,tmax⊆<x, a con-
tradiction.

The cycle must thus contain operations on at least two
objects. Assume oi is an operation on object x. Let ok be
an operation in the cycle on a different object than x and
such that o(k+1 mod n), . . . , o(i−1 mod n) are on x. Similarly,
let oj be an operation in the cycle on a different object than x
and such that o(i+1 mod n), . . . , o(j−1 mod n) are on x. Since
ok < oi < oj , it follows that ok <H,tmax oi <H,tmax oj , so
ok <H,tmax oj . It must thus hold k 6= j, which implies that
a cycle exists o1 < . . . < ok < oj < . . . < on that is shorter
than the one with minimal length, a contradiction. 2

We also prove that Eventual Linearizability is nonblocking
by showing that weakly consistency and t-linearizability are
nonblocking.

Lemma 3. Let inv be an invocation of a total operation
o on an object x. If inv on x is invoked by a process pi in
a weakly consistent history H, then there exists a response
resp on x of p such that the history H ′ obtained by appending
resp to H is weakly consistent.

Proof. Given an operation o′ completed by process pj in
the weakly consistent history H (resp. H ′), the correspond-
ing legal sequential history is denoted by τH(j, o′) (resp.
τH′(j, o

′)). Let operation o′ be the last completed operation
in H invoked by process pj . Then, resp is determined by the
execution τH(j, o′) · inv · resp. In H ′, o is a completed op-
eration. We choose τH′(i, o) to be τH(j, o′) · inv · resp. For
every other operation o′ completed by pj in H ′, τH′(j, o

′)
equals τH(j, o′). As a result, τH′(i, o) and every τH′(j, o

′)
fulfill (i)-(iii) because H is weakly consistent and <H=<H′ .
2

Lemma 4. Let inv be an invocation of a total operation
on an object x. If inv on x is invoked by a process p in a
t-linearizable history H, then there exists a response resp on
x of p such that the history H ′ obtained by appending resp
to H is t-linearizable.

Proof. Let L be a t-linearization of H. If L includes
a response to inv we are done. If not, inv is not included
in L since L only contains completed operations. Since the
operation is total, there exists a result for a response event
resp that is determined by the execution of L′ = L·inv·resp.
L′ is a t-linearization of H ′. As resp has the same response
in H ′ and L′, H ′ is t-linearizable for any value of t such that
H is t-linearizable. 2

Theorem 1. Eventual Linearizability is nonblocking and
satisfies locality.

Proof. Directly follows from Lemmas 1, 2, 3 and 4. 2



B. EVENTUAL CONSISTENCY, EVENTUAL
CONSENSUS AND CONSENSUS

In this Section, we distinguish between high-level events,
which are executed on the interface between the application
and the execution layer, and low-level events, which are ex-
ecuted on the interface between the execution layer and the
consistency layer. Given a run σ of the system, we define
as top(σ) the history containing all high-level events and
bot(σ) the history containing all low-level events. Eventual
Linearizability constraints the set of admissible high-level
histories top(σ) of a run σ. The specifications discussed in
this Section constraint the low-level histories bot(σ) of a run
σ.

The results in this section consider a non-uniform no-
tion of Eventual Linearizability, where operations invoked by
faulty processes may never appear in the final t-linearization.
We focus on non-uniformity for two reasons. The first rea-
son is that this strengthens the impossibility results of this
paper. The second reason is that, as it can be derived by
using a simple partitioning argument, ensuring a uniform
notion of Eventual Linearizability would require the exis-
tence of f +1 correct processes to complete weak operations
if f replicas can crash. The availability of f + 1 correct
replicas for completing weak operations is not assumed by
most replication algorithms implementing Eventual Consis-
tency [20]. For example, the specification of Eventual Seri-
alizability [10], which models the behavior of Lazy replica-
tion [15], does not distinguish between operations of correct
and faulty processes. However, Lazy replication implements
a non-uniform form of Eventual Serializability, where oper-
ations observed only by faulty replicas may never appear in
the eventual serialization.

Some eventually consistent (or eventually serializable) al-
gorithms ensure that all completed operations appear in the
eventual serialization. The Zeno algorithm, for example,
satisfies uniformity because it requires clients to contact a
quorum of correct replicas in order to complete weak op-
erations. This is needed to prevent clients from returning
replies from Byzantine replicas [22]. Dynamo implements
uniformity by writing values to“sloppy quorums”that might
not intersect with read quorums [9]. If f failures are to be
tolerated, both these algorithms require that that at least
one quorum of f +1 correct replicas is always available even
in worst case runs.

Eventual Consistency is not sufficient to implement Even-
tual Linearizability for arbitrary objects. In fact, we show
in the following Theorem 2 that it is not even sufficient to
implement an eventually linearizable register.

Theorem 2. An eventually linearizable implementation
of a single-writer, single-reader binary register cannot be
simulated using only an eventually consistent consistency
layer.

Proof. Consider a system with two processes p0 and p1,
where p0 is a writer and p1 is a reader. The register stores an
initial value 0. Assume by contradiction that there exists an
implementation of a read/write register with Eventual Lin-
earizability using only an eventually consistent consistency
layer. Let tl be the time such that, for all runs σ such that
bot(σ) satisfies Eventual Consistency, tl-linearizability holds
for H = top(σ). We show the contradiction by using three
finite runs. The last of these runs leads to a violation of
tl-linearizability.

In the first run σ0, process p0 writes the value 1 onto the
register after time tl. Let tw be the time when the write
operation completes and t0 be the time when the last event
of σ0 occurs. Process p1 takes no actions in this run. Let
bot(σ0) satisfy Eventual Consistency in this run.

In the second run σ1, process p1 invokes a read operation
after time tw. Let tr be the time when the read operation
completes and t1 be the time when the last event of σ1 oc-
curs. Process p0 takes no action in this run. Since no write
operation is invoked in this run, the read must return the
initial value 0. Let bot(σ1) satisfy Eventual Consistency in
this run too.

In the third run σ2, p0 and p1 observe the same events
until tr as in σ0 and σ1 respectively. For indistinguishability,
the read operation of p1 returns 0 even if it is preceded by
a write operation writing 1. At a time t2 > max(t0, t1),
the consistency layer delivers at both processes the same
sequence S including all the operations submitted before t2.
These delivery events are the last events of σ2.

In every tl-permutation L of H = top(σ2), the write oper-
ation precedes the read so the read operation returns 1. This
contradicts tl-linearizability of H since the write and read
operations are invoked after tl but the result of the read in H
is 0. Therefore, bot(σ2) must violate Eventual Consistency.
We now show that it is not the case, which leads us to the
final contradiction. It is easy to see that if nontriviality, set-
stability and liveness hold for bot(σ0) and bot(σ1), then they
also hold for bot(σ2). Prefix consistency holds if we define
Pt as follows. For t ≤ t2, Pt is equal to the empty sequence.
For t > t2, Pt is equal to the sequence S delivered at time
t2. This definition of Pt satisfies all properties (C1)-(C3) of
prefix consistency. 2

We say that a consistency layer that satisfies Eventual
Consensus satisfies t-stability if t is the time defined in the
definition of Eventual Stability. Combining Eventual Con-
sistency with Eventual Stability implicitly strengthens con-
sistency. Namely, t-stability ensures t-consistency, which is
defined as follows. A consistency layer satisfies t-consistency
if for any correct processes pi and pj delivering at any times
ti, tj > t, one of the sequences S(i, ti) and S(j, tj) is prefix
of the other.

We first show that Eventual Consensus satisfies t-consistency.

Lemma 5. If a consistency layer satisfies t-stability then
it satisfies t-consistency.

Proof. Assume that a consistency layer satisfies Even-
tual Consistency and eventual stability but contradicts the
Lemma. Let t be the time after which stability holds. This
implies that two delivery events occur at two processes pi
and pj at times ti, tj > t such that S(i, ti) and S(j, tj),
which are the two sequences delivered at times ti and tj , are
not prefix of each other.

If i = j a contradiction follows directly eventual stability.
We thus consider the case i 6= j. There must exists an index
k and two different operations oi and oj that are the k-th
elements of S(i, ti) and S(j, tj) respectively. It follows from
eventual stability that for each t′i > ti and t′j > tj , oi and oj
that are the k-th elements of S(i, t′i) and S(j, t′j) respectively.
From property (C3) of prefix consistency, there exists a time
tci > ti such that Ptci includes oi. From property (C1), Ptci

must be a prefix of all S(i, tc′i) with tc′i > tci so oi is the k-th
element of Ptci . Similarly, from property (C3) and (C1) it
follows that there exists a time tcj such that Ptcj includes oj



as the k-th element. However, Ptci and Ptcj are not prefixes
of each other. This violates (C2). 2

We are now ready to show the equivalence of implement-
ing eventually linearizable arbitrary shared objects and of
implementing a consistency layer solving Eventual Consen-
sus.

Lemma 6. An eventually linearizable implementation of
an arbitrary object can be implemented using only a consis-
tency layer satisfying Eventual Consensus.

Proof. Assume that the consistency layer satisfies ts-
stability. From Lemma 5, the Eventual Consistency layer
also satisfies ts-consistency. The algorithm for the imple-
mentation is the one of Algorithm 1. High-level invocation
events at each process pi for each operation o are forwarded
to the lower consistency layer. The implementation then
waits for the first sequence delivered by the consistency layer
at process pi containing o. The time when this delivery event
takes place is denoted as t(o). The implementation then ex-
ecutes the resulting sequence and returns the results as an
upper-layer response event.

It is clear from the liveness of the consistency layer and
from Algorithm 1 that each invoked operation is eventually
completed. Weak consistency directly derives from the set
stability and nontriviality properties of the consistency layer.
We now show that tl-linearizability for some time tl also
holds.

From the prefix consistency (C3) property of the consis-
tency layer, all operations submitted by correct processes
are eventually included in a consistent prefix Pt. From pre-
fix consistency (C2), consistent prefixes are prefixes of each
other. Let tp be the minimum time such that all operations
o such that t(o) ≤ ts are included in Ptp , and tc be the
minimum time when all faulty processes have crashed. We
define tl to be the minimum time greater than max(ts, tp, tc)
and show that the simulation of Algorithm 1 satisfies tl-
linearizability.

Assume by contradiction that tl-linearizability is violated.
Since tl > tc this implies that there exists, for some run σ, a
high-level operation oi of a correct process pi in H = top(σ)
which is invoked after tl and whose result is different than
the result of oi in any tl-linearization L of H. Assume that
there exists a tl-linearization L of H having Si = S(i, t(oi))
as a prefix. It follows from the implementation of Algo-
rithm 1 that the result of oi in L is the same as in H, a con-
tradiction. Therefore, there exists no such L. This implies
that for some operation ok ∈ Si there exists an operation
oj such that oj <H,tl ok and oj 6<Si ok. This in turns im-
plies that either oj 6∈ Si or ok <Si oj . Before contradicting
these two cases, note that from oj <H,tl ok, the comple-
tion of oj precedes the invocation of ok. From nontriviality,
Sj = S(j, t(oj)) cannot include ok,

Assume that the first condition holds and that there exists
an operation oj invoked by a process pj such that oj <H,tl
ok, ok ∈ Si and oj 6∈ Si. We consider two cases based on
the value of t(oj). If t(oj) ≤ ts then oj is included in Ptp .
From prefix consistency (C1), Ptp is a prefix of Si so oj ∈ Si.
Therefore, t(oj) > ts so it follows from ts-consistency that
one of Si and Sj = S(j, t(oj)) is a prefix of the other. Since
oj 6∈ Si but oj ∈ Sj , Si is a prefix of Sj , so ok ∈ Sj . However,
we have shown that ok 6∈ Sj .

We now consider the second condition, that is, that there
exist two operations oj and ok in Si such that oj <H,tl ok

and ok <Si oj . We consider two cases. If t(oj) > ts, it
follows from ts-consistency that one of Sj and Si are a prefix
of each other. Since ok <Si oj and oj ∈ Sj , ok <Sj oj .
However, we have shown that ok 6∈ Sj . If t(oj) ≤ ts then
Ptp includes oj . From nontriviality and since ok is invoked
after tl ≥ tp, there exists no process h such that S(h, tp)
includes ok. This and prefix consistency (C1) imply that
Ptp does not include ok. Since t(ok) > tl ≥ tp, Ptp is a
prefix of Sk = S(k, t(ok)) from prefix consistency (C1). This
implies that oj <Sk ok. However, one of Si and Sk is prefix
of the other, a contradiction with ok <Si oj . In fact, from
the definition of <H,tl , ok is invoked after tl. This and ts-
consistency imply that one of Sk and Si are prefix of the
other. 2

Lemma 7. A consistency layer satisfying Eventual Con-
sensus can be implemented using only an eventually lineariz-
able arbitrary object implementation.

Proof. We show that the simulation of Algorithm 2 satis-
fies Eventual Consistency and ts-stability for some time ts.
Let tl be the time such that tl-linearizability holds for all
histories, td be the time when all operations submitted by
invoked processes before tl are completed at all correct pro-
cesses, and ts be the minimum time greater than max(tl, td).
The existence of td is given by the liveness of the sequence
implementation.

Set stability and nontriviality directly follow from the
weak consistency property of the sequence. For liveness,
it follows from the termination property of the sequence
implementation that all append operations o invoked by a
correct process upon a submit(o) event terminate. From
tl-linearizability, all appended operations are read by the
first read operation o′ invoked by each correct process after
max(o, tl). All submitted operations are thus appended and
eventually delivered by each correct process.

For prefix consistency, let L be the tl-linearization of the
operations on the shared object, and let Pt be defined as
follows. Pt is the empty sequence for t ≤ ts. For t > ts, Pt is
the value returned by the last read operation of any correct
process which is ordered in L before all reads invoked by
correct processes and ongoing at time t. Prefix consistency
(C1) follows from the fact that every operation returned by
a read invoked after td is observed by any following read in
a tl-linearization. For prefix consistency (C2) it is sufficient
to observe that for each t ≥ tl and t′ > t, either Pt = Pt′ or
the read whose return value defines Pt′ observes a sequence
which is an extension of the sequence observe by the read
of Pt. In fact, both sequences are prefixes of L. Prefix
consistency (C3) directly follows from the liveness of the
sequence implementation, from the definition of Pt and from
the fact that sequences are periodically delivered. 2

Theorem 3. Eventual Consensus is a necessary and suf-
ficient property of a consistency layer to implement arbitrary
shared objects respecting Eventual Linearizability.

Proof. The sufficiency of Eventual Consensus is shown
by Lemma 6, the necessity is shown by Lemma 7. 2

C. CORRECTNESS OF THE AURORA PRO-
TOCOL

We start the proof by providing some additional defini-
tions, notations and conventions which will be used in the
following correctness argument.



C.1 Definitions

Time.
Some proofs refer to a global time reference t ≥ 0. Com-

putation time is ignored, and the state of a process at time
t is the one after any event occurred at t. No two events
occur at the same process and at the same time, and only a
finite number of events occur in a finite time. We say that
a message is received or abdelivered when the corresponding
receipt or abdelivery event occurs.

Sequences and histories.
We define two sequence of operations to be compatible if

one of the two is a prefix of the other. A strong prefix is a
prefix of operations terminating in a strong operations. We
abuse the terminology and say that a sequence S1 is a subset
of another sequence S2 if all operations of S1 are included
in S2.

We define H(i, t) as follows: if pi not crashed at time t,
then H(i, t) is the local history stored by pi at time t; else,
it is the last history stored by pi before crashing. The order
induced on operations by the local history of a process pi
at time t is denoted as <i,t. The order on operations deter-
mined by a sequence S is denoted as <S . Local variables
and predicates of a process pi are denoted by a subscript i.

A process pi stores a variable x = val upon receiving or
abdelivering a message m if x = val in the local state of
pi at the time of the local receipt or abdeliver event of m.
A process pi stores an operation at a given time if it in-
cludes the operation in its local history Hi. A process pi
stores a strong prefix π for round k when pi stores a local
history Hi containing the last operation of π upon abdeliv-
ering a PROP(∗, ∗, k), a PUSH(∗, k) or a CLOSE-RND(k)
message. A process pi directly stores a strong prefix π for
round k when pi stores π for k for the first time upon ab-
delivering a PROP(∗, ∗, k) or a CLOSE-RND(k) message.
Strong prefixes that are indirectly stored by pi are stored
when pi receives a PUSH message from some other process.
We say that π is a longest strong prefix for pi at a given time
t if π is a strong prefix of the local history H(i, t) and there
exists no strong prefix π′ of H(i, t) which is longer than π.

We need sometimes to show that the system converges to
a common state after a certain time. Given a process pi
and a finite set of operations O, we define tw(i, O) as the
maximum time t in a given run when the following holds:
at time t process pi appends an operation op = H ′ onto its
history or executes a merge(H ′, ∗, H, ∗) such that either (i)
there exists o ∈ O ∩ H ′ such that o 6∈ H(i, t), or (ii) there
exist o, o′ ∈ H(i, t) ∩H ′ such that o <H o′ and o′ <H′ o.

Communication primitives.
The reliable channel module has the following property: if

a correct process pi sends a message m to a correct process
pj , then pj eventually receives m. The atomic broadcast
module has four properties: (validity) If a correct process
abcasts a message m, then it eventually abdelivers m; (uni-
form agreement) If a process abdelivers a message m, then
all correct processes eventually abdeliver m; (uniform in-
tegrity) For any message m, every process abdelivers m at
most once, and only if m was previously abcast by its sender;
(total order) If two correct processes pi and pj abdeliver two
messages m and m′, then pi abdelivers m before m′ if and
only if pj abdelivers m before m′.

Initially: ld ← ⊥;
T [j] ← ⊥ for each j ∈ [0, n− 1];
L outputs ⊥;

// A process calls this function to query its

local instance of the leader oracle

function query()
if ld 6= ⊥ then

return ld;
else

k ← L;
return k;

upon L changes its output to k
send TRUST FD(k) to all processes;

upon receive TRUST FD(k) from process pj
T [j] ← k;
if ∃h,Q : T [l] = h for each l ∈ Q and |Q| ≥ n/2
then

ld ← h;
else

ld ← ⊥;

Algorithm 6: Implementing Ω on top of L ∈ ΩQ

Failure detectors and the quorum property.
The algorithm uses a failure detector D and a leader or-

acle ΩD implemented on top of D. We call a leader oracle
any failure detector which outputs the id of a single trusted
process. We say that a correct process pld is perpetually
trusted at time t if at each time t′ ≥ t and for each correct
process pi, ΩD = ld at pi. We say that a correct process
pld is perpetually trusted if it is perpetually trusted at some
time.

We say that a leader oracle is in class ΩQ is it satisfies
the following quorum property: there exists a quorum Q of
correct processes and a process pld such that eventually all
processes in Q perpetually trust pld and |Q| > n/2. Clearly,
a leader oracle can satisfy this property only if a majority
of correct processes exists. If this precondition is met, each
leader oracle in Ω is trivially in ΩQ. Furthermore, the simple
Lemma 8 shows that given a leader oracle in ΩQ, a leader
oracle in Ω can be simulated using Algorithm 6, which relies
on reliable FIFO channels. Therefore, classes ΩQ and Ω are
equivalent if a majority of correct processes exists.

Causal consistency.
We define causal consistency as follows. We first define

the happens-before relation <C as follows. Let o and o′ be
two different operations, let i the the process that invoked o′,
and let t the time when o′ is invoked. We say that o <C o′

if and only if o ∈ S(i, t′) for some t′ < t or there exists
a third different operation o′′ such that o <C o′′ <C o′.
A consistency layer satisfies causal consistency if, for each
process i and time t it holds that: (C1) If o ∈ S(i, t) and
o′ <C o then o′ ∈ S(i, t), and (C2) If o, o′ ∈ S(i, t) and o
precedes o′ in S(i, t) then o <C o′. It can be shown that
this definition of causal consistency property is sufficient to
implement causal memory [14].

C.2 Correctness proof

Lemma 8. Algorithm 6 simulates a leader oracle in Ω
using a leader oracle L ∈ ΩQ.



Proof. The proof is by contradiction. Assume that even-
tually the leader oracle L in ΩQ permanently outputs the
same process id k at a quorum Q of correct processes such
that |Q| > n/2 and that pk is not permanently trusted by
the local instance of the simulation of some correct process.
Each process in Q will eventually send a TRUST FD(k)
to all other processes as last TRUST FD message. Since
the communication channel is FIFO and reliable, these mes-
sages are eventually received by each correct process and
are the last messages received from any process in Q. This
implies that for each correct process, eventually it perma-
nently holds T [j] = k for each j ∈ Q . For each correct
process pi, when the last TRUST FD message from a pro-
cess in Q is received by pi, ld is permanently set to k. The
simulation thus permanently returns the same process id k
to each correct process, a contradiction. 2

Lemma 9. If a process pi abcasts a PROP(H ′, S, k)
message m, then H ′ is an extension of a strong prefix πk−1

stored by pi for round k − 1 and S \H ′ is empty.

Proof. Assume by contradiction that the thesis does not
hold. It follows from the predicate must-propose-new-prefix
that if pi abcasts the PROP(H ′, S, k) message then H ′ is
the local history of pi, S \ H ′ is empty and ki = k. If pi
has already stored a strong prefix πk−1 for round k − 1, H ′

is an extension of πk−1, a contradiction. So pi has not yet
stored a strong prefix πk−1. If pi has set its local variable ki
to k then it has abdelivered a CLOSE-RND(k− 1) message
when Pi = (∗, ∗, k − 1, ∗). If di < k − 1 upon abdelivering
CLOSE-RND(k− 1), then pi stored a strong prefix for πk−1

by doing the following merge, a contradiction. Therefore,
P = (∗, ∗, k−1, ∗) and di >= k−1. This implies that pi has
already stored a strong prefix for k − 1 upon abdelivering a
PROP(∗, ∗, k−1) message or upon receiving a PUSH(∗, k−1)
message, the final contradiction. 2

Lemma 10. If a process pi directly stores a strong prefix
for round k then pi has stored exactly one strong prefix for
round k − 1 and d = k − 1 when the strong prefix is stored
for round k.

Proof. We first show that if pi directly stores a strong
prefix for round k at a certain time tk, it stores ki = k
and di < k immediately before tk. Two events can induce
pi to directly store a strong prefix. If pi stores a strong
prefix upon abdelivering a PROP(∗, ∗, k) message, then from
the definition of proposal-stable it must hold ki = k and
di <= k − 1, so we are done. If the strong prefix is stored
upon abdelivering a CLOSE-RND(k) message m, it must
hold Pi = (∗, ∗, k, ∗) and, from the merge, di < k. From the
definition of from-round-winner, Pi was assigned this value
only if a PROP(∗, ∗, k) message m′ is abdelivered before
m and thus if ki = k > di at that time. We now only
need to show that the values of ki and di are not modified
between receiving m and m′. This is easy to see for ki.
By contradiction, the value of di would be set to a value
higher than k − 1 before storing the strong prefix only if a
PUSH(∗, d) message with d > k− 1 is received. In this case
pi would not directly store a strong prefix for round k, a
contradiction.

We now show that at least one strong prefix has been
stored by pi for round k−1 and that di ≥ k−1 immediately
before tk. The value of ki is set to k only upon abdelivering
a CLOSE-RND(k − 1) message. When this occurs, a new

strong prefix for round k − 1 is included in the new history
Hnew built by pi. If this strong prefix is stored by pi in the
subsequent merge, we are done since di is set to k−1 by the
merge and it holds di ≥ k−1 until tk since di monotonically
grows. Else, this implies that pi has already set di = k − 1.
This happens only if pi has abdelivered PROP(∗, ∗, k − 1)
message and has stored a new strong prefix for k−1, or if it
has received a PUSH(∗, d) message with d = k − 1. In both
cases process pi stores a strong prefix for round k − 1 and
sets di = k − 1, so we are done.

We now only need to show that no other strong prefix
is stored for round k − 1. This follows from the fact that
di ≥ k− 1 after storing the first prefix for k− 1 and that di
monotonically grows. In fact, no following PROP(∗, ∗, k−1)
message will lead pi to the delivery of a strong prefix nor will
any merge executed upon receiving a PUSH(∗, k − 1) or a
CLOSE-RND(k − 1) message do it. 2.

Lemma 11. The relation <i,t is a partial order for each
process pi and time t.

Proof. Transitivity and reflexivity are trivial because his-
tories are sequences. We now show that the relation is anti-
symmetrical, that is, it never induces cycles. Since a history
is a sequence, it is sufficient to show that no local history
has duplicates. This is trivially true for the initial empty
history.

Histories are modified either by appending operations or
by merging other histories. Assume by contradiction that an
append or a merge creates a duplicate on a history for the
first time. Appends of weak operations are always preceded
by a check that an operation is not already present in the
history. Appends of strong operations in a new strong prefix
for round k do not create cycles because strong operations
are always stored according to a proposal message. From
Lemmas 10 and 9, this contains no duplicates. Merging
two histories does not create duplicates unless the merged
histories have duplicates, and this would imply that some
other prior history contains duplicates, a contradiction. 2

Lemma 12. If before a time t a process pi abdelivers a
message mi and a process pj abdelivers a message mj, then
some of the two processes abdelivers both mi and mj before
t.

Proof. Assume by contradiction that this would not be
the case. This implies that abcast never satisfies uniform
agreement and total order in runs where D ∈ 3S and a
majority of correct processes is present. In fact, if uniform
agreement holds, pi and pj will abdeliver mi and mj at some
time after t. Therefore pi will deliver mi before mj and pj
will do the opposite. This represents a violation of total
order. 2

Lemma 13. For each processes pi and pj, if pi stores
Pi = P ′ and ki = k′ upon abdelivering a message m and
pj abdelivers m then pj stores Pj = P ′ and kj = k′ upon
receiving m.

Proof. We show this by induction on the delivery order
of m at pi. In the base case, all processes pi have initially
the same value of Pi = ⊥. Let m′ be the last message
abdelivered by pi prior to m. For the inductive step, if pi
and pj abdeliver m′ they they both store Pi = Pj = Pprev
and ki = kj = kprev upon abdelivering m′. Assume pi stores



Pi = P and ki = k′ upon abdelivering m and pj abdelivers
m. From Lemma 12, when pj abdelivers m, it has also
already abdelivered every message preceding m in the total
order of abcast, so it has abdelivered m′. Upon abdelivering
m′, pj stores Pj = Pprev and kj = kprev. The next values of
Pj and kj are only determined upon abdelivering m and are
only dependent on the value of m and on the previous value
of Pj and kj . Therefore, pj also stores Pj = P ′ and kj = k′

upon receiving m. 2

Lemma 14. For each k′, processes pi and pj and times
ti and tj, if pi stores Pi = (∗, ∗, k′, h) at time ti and pj stores
Pj = (∗, ∗, k′, l) at time tj, then h = l.

Proof. By contradiction, assume h 6= l for some times
ti and tj . pi must have set Pi = (∗, ∗, k′, h) upon abdeliv-
ering a PROP(∗, ∗, k′) message mi with k′ = ki before ti
and pj must have set Pj = (∗, ∗, k′, l) upon abdelivering a
PROP(∗, ∗, k′) message mj with k′ = kj before tj . From
Lemma 12 some process, assume wlog pj , has received both
mi and mj . Also assume wlog that mi is abdelivered by
pj before mj in the total order. From Lemma 13, pj stores
Pj = Pi upon receiving mi and has kj = ki = k′. After this
time and before pj receives mj , pj must have set Pj = ⊥
because it has changed the third field of Pj . This follows
from the definition of from-round-winner. Whenever Pj is
set to ⊥, however, kj is set to kj + 1 = k′ + 1. From predi-
cate from-round-winner, process pj will thus never set Pj to
a value (∗, ∗, k′, l), a contradiction. 2

Lemma 15. If a process pi delivers its local history and
stores Pi = P ′ = (∗, ∗, k′, i) upon abdelivering a message m
and a process pj stores Pj = (∗, ∗, k′, ∗) upon abdelivering m
or afterwards, then Pj = P ′.

Proof. It follows from proposal-stable that is pi delivers
its local history when Pi = P ′, then pi does this upon ab-
delivering a PROP(∗, ∗, k′) message m from itself. di is set
to k′ upon the abdelivery of m. After this time, pi only
abcasts PROP(∗, ∗, ki) messages with ki > di = k′. From
Lemma 13, process pj stores Pj = P ′ upon abdelivering
m. After this time, pj modifies Pj only if it abdelivers a
PROP(∗, ∗, k′) from pi, but no such messages is received af-
ter m because of the FIFO property of abcast, or if pj sets
Pj to ⊥, but then pj sets kj to k′ + 1 and, by definition of
from-round-winner, will never set Pj to (∗, ∗, k′, ∗) again. 2

Lemma 16. If two processes pi and pj store longest strong
prefixes πi and πj for round k, then πi = πj and every ϕk′
stored by any process for round k′ < k is a prefix of πi and
πj

Proof. We show this by induction on k. The property
trivially holds for k = 0 when the strong prefixes of all pro-
cesses are empty.

For k > 0, if by contradiction pi and pj would store dif-
ferent strong prefixes πi and πj for round k upon receiving
a PUSH message, then some other process would have di-
rectly stored those prefixes. Therefore, we reduce the prob-
lem to showing the thesis if pi and pj directly store πi and
πj . Assume by contradiction that processes pi and pj di-
rectly store different strong prefixes πi and πj upon abde-
livering PROP(∗, ∗, k) or CLOSE-RND(k) messages mi and
mj . From Lemma 10, pi and pj have stored exactly one
strong prefix, ϕik−1 and ϕjk−1 respectively di = dj = k − 1

upon abdelivering these messages. By induction, ϕik−1 =

ϕjk−1 = ϕk−1 is the current longest strong prefix stored by
both pi and pj immediately before abdelivering mi and mj .

We consider now two different cases. First we assume
that at least one of mi and mj is a PROP(H,S, k). Then
we consider the case when both mi and mj are CLOSE-
RND(k) messages.

If at least one of pi and pj , say wlog pi, stores πi upon
abdelivering a PROP(H ′, S, k) message mi, then from prop-
stable this was sent by pi and, as we have shown, ϕk−1 is
a prefix of H ′. πi is then obtained by pi by appending
elements of S to H ′ in <D order. Since ϕk−1 is a prefix of
H ′, it is also a prefix of πi. Let P = (H ′, S, k, i) the value
of Pi stored by pi when πi is stored.

From prop-stable, pj does not stores πj before abdelivering
mi. Assume by contradiction that mj precedes mi in the
total order of abcast. pj would have stored kj = k+ 1 upon
abdelivering mj . Since pi abdelivers mi which follows mj in
the total order, it follows from Lemma 12 that pi abdelivers
mj before mi. From Lemma 13, pi would also set ki = k+1,
upon receiving m′ and, from proposal-stable, it would thus
not store a strong prefix for round k upon receiving mi, a
contradiction. Therefore, mj follows mi in the total order
of the abcast.

From Lemma 13, pi stores Pj = (H ′, S, k, i) upon abde-
livering mi. From Lemma 15, Pj = P upon abdelivering
mj . From proposal-stable, mj can not be a PROP(∗, ∗, k)
message so it must be a CLOSE-RND(k). When mj is ab-
delivered by pj , pj builds the same strong prefix Hnew = πi
as stored by pi since Pj = P . πj is obtained by merging
the current local history of pj with Hn. From Lemma 10,
dj = k − 1 so k > dj and the merge returns πj = πi. Also
from Lemma 10, ϕk−1 is a prefix of πj and of πi, so the
result of the merge is the longest strong prefix stored by pj .
This contradiction concludes the proof for the first case.

We now consider the second case where both pi and pj
store πi and πj upon abdelivering CLOSE-RND(k) messages
mi and mj . Assume wlog that mi precedes mj in the total
order of abcast. Let (H ′, S, k, h) be the value of Pi when
before mi is abdelivered. From round-winner, Pi was set to
a value (∗, ∗, k, h) for the first time only after pi abdelivers
a PROP(∗, ∗, k) message m′ from process ph. mi is the first
CLOSE-RND(k) message abdelivered after mj in the total
order of abcast. If this would not be the case, pi would have
set ki > k and would not have stored a strong prefix upon
abdelivering mi, a contradiction. pi obtains Hnew = πi
by appending operations of S onto H ′ in <D order. From
Lemma 9 and by the induction hypothesis, ϕk−1 is a prefix of
the local history H ′ stored by a process ph. This implies that
ϕk−1 is a prefix of πi so πi is a new longest strong prefix of pi.
From Lemma 12 and total order of abcast, pj also delivers
m′ before mi and mi before mj . From Lemma 13, pj also
sets Pj to (∗, ∗, k, h) for the first time upon abdelivering m′.
We have already shown that mi is the first CLOSE-RND(k)
message which is abdelivered after m′. From Lemma 13, pj
also stores a strong prefix πj for round k and builds πj = πi
upon abdelivering mi. This is the new longest prefix since
ϕk−1 is a prefix of πi. This is the final contradiction. 2

Lemma 17. For each processes pi and pj and times ti
and tj, if πi is a strong prefix of H(i, ti) and πj is a strong
prefix of H(j, tj) then πi and πj are compatible.

Proof. When a process pi stores a strong prefix for round
k, it sets di = k and stores no other strong prefixes for



rounds k′ ≤ di afterwards. Therefore, the result follows
directly from Lemma 16. 2

Lemma 18. For each process pi and times t and t′, if
t′ > t and π is a strong prefix of H(i, ti) then πj is a strong
prefix of H(i, t′).

Proof. The result directly follows from Lemma 16 if pi =
pj . 2

Lemma 19. For each times t and ti and correct processes
pi and pj and for each operation op submitted by any process
before t and included in H(i, ti), if t′ ≥ ord(t) then op ∈
H(j, t′)

Proof. Assume by contradiction that there exists an op-
eration op submitted before t and included in H(i, ti such
that op not in Hj . Since op not in H(j, t′) and t′ ≥ ord(t),
pj never includes op into its history by definition of ord(t).

Assume that op is a weak operation. Since op is stored
by pi, pi eventually sends a PUSH(H, ∗) message including
op ∈ H to pj . Since pi and pj are correct, pj eventually
receives the PUSH message and calculates its new local his-
tory as a merge between H and its previous local history.
The resulting history contains op, a contradiction.

Assume now that op is strong and let k′ be the round
number where pi stores the first strong prefix πi including
op. After storing πi, pi stores di ≥ k′. If pj stores a strong
prefix for round k′′ ≥ k′, it also stores πi from Lemma 16,
a contradiction. Therefore, pj never stores a strong prefix
for a round k′′ ≥ k′ and thus never sets dj ≥ k′. However,
pi eventually sends a PUSH(∗, di) message with di ≥ k′ to
pj . Since both pi and pj are correct, pj eventually receives
the PUSH message. After the subsequent merge, pj stores
dj ≥ k′, a contradiction. 2

Lemma 20. If there exists a time tld when pld is perpet-
ually trusted, then for each t′ ≥ ord(ord(tld)) and for each
correct process pi, H(i, t′) is a subset of H(ld, t′).

Proof. We show that Hi = H(i, t′) is a subset of Hld =
H(ld, t′) by contradiction. Assume that there exists an op-
eration op submitted by a process pj such that op ∈ Hi and
op 6∈ Hld. If op is submitted before tld, thesis follows from
t′ ≥ ord(tld) and Lemma 19. Therefore, op is submitted
after tld.

We distinguish two cases. If op is a weak operation, pj
trusts pld when op is submitted and sends a WREQ msg
only to pld. pld is the first process to add op to its his-
tory and all other processes store op in their history after
directly or indirectly merging their history with the one of
pld. Therefore, if op ∈ Hi then op ∈ Hld.

If op is a strong operation, let k′ be the round number
where pi stores the first strong prefix πk including op. Since
op is submitted after tld and pld is perpetually trusted, it
follows from must-propose-prefix that pld is the only process
which abcasts a PROP(∗, ∗, k′) message. This implies that
no process pj 6= pld ever sets Pj = (∗, ∗, k′, j). Therefore,
any process pj 6= pld that directly stores πk for round k′ does
it upon abdelivering a CLOSE-RND(k′) message m. Since
pld is the perpetual leader, no process pj 6= pld abcasts a
CLOSE-RND(k′) message. Therefore m is sent by pld after
having stored πld in its history. From Lemma 16, πld is equal
to πk and thus includes op. Any other process, like pi, which
stores πi for round k′ does it after pld. This implies that if
op ∈ Hi then op ∈ H. 2

Lemma 21. For each time t and t′ ≥ t, if op <i,t op
′,

op and op′ are not in a strong prefix of H(i, t) or of H(i, t′)
and op <D op′, then op <i,t′ op

′

Proof. Since operations are never removed from a history
and op <i,t′ op

′, pi stores op and op′ for any time t′ ≥ t.
Assume by contradiction that for some time t′′ ≥ t, pi orders
op′ before op for the first time in its local history. The
order of two operations is changed in a local history only by
making a merge. However, any merged history always keeps
op <i,t′′ op

′ as op′ <D op and op and op′ are not in a strong
prefix of H(i, t′′). 2

Lemma 22. For each time t, if pi and pj are correct pro-
cesses, op <i,ti op

′ and op′ <j,tj op op and op′ are submit-
ted before t, op and op′ are not in a strong prefix of H(i, ti)
or H(j, tj) and op′ <D op in the deterministic order, then
ti < ord(t).

Proof. Assume by contradiction ti ≥ ord(t). Assume
that pi receives at time t′ ≤ ord(t) a PUSH(Hp, ∗) mes-
sage m sent by pj at time t′′ ≤ t′ with a history containing
op′ <Hp op. Neither op nor op′ are in the strong prefix of
H(i, t′′) or Hp because otherwise they would also be in a
strong prefix of the local history of pi at time ord(t) ≥ t′

from the definition of the merge operation and from LEMMA 18.
When m is received, pi merges the Hp in its local history.
The resulting history orders op′ < op as op′ <D op and as
op and op′ are not in a strong prefix of H(i, t′′) or of Hp.
From Lemma 21, op′ <i,ti op for each time ti ≥ t′′ so also
for each time ti ≥ ord(t), a contradiction.

We now need to show that pi receives a PUSH(Hp, ∗) mes-
sage m from pj with a history containing op′ < op at a time
t′′ ≤ ord(t). Assume pi does not receive any history where
op′ precedes op before ord(t). By definition of ord(t) and
since op and op′ are both submitted before t, pi never re-
ceives a history containing where op′ precedes op. Since
op′ <j,tj op, process pj eventually send a PUSH(Hp, ∗) mes-
sage to pi. From Lemma 21, H(j, t′) still orders op′ before
op and so does Hp. Since pi and pj correct, pi eventually
receives Hp, a contradiction. 2

Lemma 23. For each time t, if ti, tj ≥ ord(t), pi and pj
are correct processes, op and op′ are submitted before t and
are not in a strong prefix of H(i, ti) or H(j, tj), then it never
holds op <i,ti op

′ and op′ <j,tj op.

Proof. Assume by contradiction that op <i,ti op′ and
op′ <j,tj op. If op <D op′ it follows from Lemma 22 that
tj < ord(t), a contradiction. Similarly, if op′ <D op then
ti < ord(t), a contradiction. 2

Lemma 24. For each time t, if ti, tj ≥ ord(ord(t)), pi
and pj are correct processes, op is submitted before t, op′ <i,ti
op and op and op′ are not in a strong prefix of H(i, ti) or
H(j, tj), then op′ <j,tj op.

Proof. Assume by contradiction that op′ 6<j,tj op. Also,
assume that op′ is submitted before ord(t). Since pi stores
op and op′, pj stores op and op′ at time tj ≥ ord(ord(t))
from Lemma 19. This implies that op <j,tj op

′. Since both
op and op′ are submitted before ord(t) and are not in the
strong prefix of H(i, ti) or H(j, tj), a contradiction follows
from Lemma 23.

We now need to show that op′ is submitted before ord(t).
op and op′ are weak operations because are not included



in a strong prefix. There are two ways for pi to store op′

before op. pi can directly append op after op′ in its history
or can merge its local history with another history H such
that op′ <H op and contained in a PUSH(H, ∗) message.
In both cases, some process pk has directly appended op
after op′. By definition of ord(t) and since pk stores op, op
these operations were already stored by pk at time ord(t).
Since op is appended by pk in its local history after op′, op′

was already stored by pk at time ord(t). Therefore, op′ is
submitted before ord(t). 2

Lemma 25. For each pair of operations op and op′, times
ti and tj and correct processes pi and pj if there exists a time
tld when pld is perpetually trusted, ti, tj >= ord(ord(tld)),
op and op′ are not in a strong prefix of H(i, ti) or H(j, tj)
and op′ <i,ti op and op ∈ H(j, tj) then op′ <j,tj op.

Proof. If op is submitted before tld, the result directly
follows from Lemma 24. Therefore, op and op′ are submitted
after tld.

If op or op′ are in a strong prefix, since pld is the only
process which trusts itself after tld and from must-propose-
new-prefix, it follow stat pld is the only process which abcasts
PROP(H,S, ∗) messages with op or op′ in H ∪ S. Else, pld
is the first process to establish an order for op and op′. In
both cases, if a process pi stores op′ before op, this is the
order established by pld. Therefore, each process pj storing
op also lets it precede by op in its local history.

The last remaining case is the one where op′ is submitted
before tld and op is submitted after tld. From Lemma 19
and the fact that pi stores op′, pj stores op′ before ord(tld).
Also, pj stores op by hypothesis, so pj has ordered op and
op′ at time tj . Assume by contradiction that op <j,tj op

′.
This and op′ <i,ti op would contradict Lemma 24. 2

Lemma 26. For any pair of operations op and op′, times
t′ and t′′, and correct process pi if there exists a time tld
when pld is perpetually trusted t′, t′′ ≥ ord(ord(ord(tld)))
and op <ld,t′ op

′, then op′ 6<i,t′′ op.

Proof. Assume by contradiction that op′ <i,t′′ op. If op
(resp. op′) is strong, a contradiction directly follows from
Lemma 17 and op′ <i,t′′ op (resp. op <ld,t′ op

′). Therefore,
op and op′ are weak.

If op and op′ are not in a strong prefix, a contradiction
follows directly from Lemma 25. Therefore, both operations
are in a strong prefix.

Let k be the minimum round number such that op or op′

are in a strong prefix π of H(ld, t′) or H(i, t′′). π either
includes op but not op′, or op′ but not op, else Lemma 17
would be violated by pld or pi. Assume that π includes op′

but not op. The argument in case π includes op but not op′

is similar and we discuss the main differences below.
Assume that π has been submitted before ord(ord(t)).

Since pi or pld have stored π, all other correct processes do
the same before ord(ord(ord(t))) from Lemma 19. There-
fore, pld stores op′ before op at time t′ > ord(ord(ord(tld)))
but this is inconsistent with π, a contradiction of Lemma 18.
In case π only includes op′, a similar contradiction is built
with pi.

We now need to show that π has been submitted before
ord(ord(t)). By definition, π is built by a process after abde-
livering a PROP(H ′, S′, k) messagem from a process ph, and
is the result of appending the strong operations of S′ onto
H ′. Since op′ is weak, op′ ∈ H ′. Let th be the time when ph

sends m. Since op′ is in H ′ then op′ ∈ H(h, th). By defini-
tion of k, neither op nor op′ are in a strong prefix of H(h, th).
Assume by contradiction that th ≥ ord(ord(tld)). It follows
from this, Lemma 25, op′ ∈ H(h, th) and op <ld,t′′ op

′ that
op <h,th op

′. Therefore H ′, and thus the strong prefix π too,
would include op and op′, a contradiction. In case π includes
op but not op′, a contradiction would follow from Lemma 25
and op′ <i,ti op since π would contain op and op′. This im-
plies that th < ord(ord(tld)) so π has been submitted before
ord(ord(tld)). 2

Lemma 27. If there exists a time tld when a process pld
is trusted by all processes, then there exists a time t such
that for each t′ ≥ t and for each correct process pi it holds
that H(i, t) is a prefix of H(i, t′).

Proof. Let H(i, t) be the history stored by process pi at
time t. By contradiction, assume that t = ord(ord(ord(tld))),
and let tm ≥ t be the minimum time such that H = H(i, t)
is not a prefix of Hm = H(i, tm).
H is a subset of Hm and Hm is a subset of H(ld, tm). The

first fact follows from the fact that histories are modified
by appending operations or by merging and that merges
return the union of the merged histories. The second follows
from Lemma 20. From Lemma 26, both H and Hm order
their operations as in H(ld, tm), so H is a prefix of Hm, a
contradiction. 2

Lemma 28. If a correct process pld which is eventually
permanently trusted by ΩD abcasts a PROP(∗, ∗, k) message
and eventually stops modifying Hld until kld > k, and if
ΩD ∈ Ω and a majority of correct processes exists, then
eventually pld sets kld > k and Qld = ⊥.

Proof. The proof is by contradiction. By hypothesis,
pld abcasts a PROP(∗, ∗, k) message. Since ΩD ∈ Ω and a
majority of correct processes exists, abcast terminates. This
and the fact that pld is correct implies that some process will
be the winner of round k by having its proposal abdelivered.

If pld is the winner of round k, it sets Pld = (∗, ∗, k, ld) and
Q 6= ⊥. If pld later abdelivers a CLOSE-RND(k) message,
it sets kld > k and Qld = ⊥, a contradiction. Therefore, pld
never abdelviers a CLOSE-RND(k) message so, from valid-
ity of abcast, pld never abcasts such a message. This implies
that ΩD at pld always outputs ld. From must-propose-new-
prefix, pld keeps sending proposal messages whenever its lo-
cal history is modified. From validity of abcast, process pld
abdelivers all the proposal messages that it abcasts. By hy-
pothesis, pld eventually stops adding operations to its local
history Hld during round k. Therefore, process pld will even-
tually abdeliver a PROP(H ′, ∗, k) message sent from itself
with H ′ = Hld. It will therefore abcast a CLOSE-RND(k)
message, a contradiction.

If pj 6= pld is the winner of round k, pld sets Pld =
(∗, ∗, k, j). It is sufficient to show that pld abcasts or ab-
delivers a CLOSE-RND(k) message to reach a contradiction
like in the previous case. Therefore pld never abdelivers a
CLOSE-RND(k) message from the winner pj . This implies
that eventually suspect-round-winnerld will hold since pld
is the only process which is permanently trusted by ΩD.
Therefore, pld will abcast a CLOSE-RND(k) message, a
contradiction. 2

Lemma 29. If a process pi stores a new history Hn by
merging its local history H and another history H ′ and both



H and H ′ satisfy properties (C1) and (C2) of causal consis-
tency, then Hn satisfies (C1) and (C2)

Proof. It is trivial that Hn satisfies (C1) since Hn is
the union of H and H ′. For (C2), let M be the result of
the merge and assume by contradiction that o <C o′ but
o′ <M o. Since M stores o′, one of H and H ′, say H,
stores o′. From (C1), H stores o too. From (C2), o <H o′.
Assume that o and o′ are not in a strong prefix π of H or
H ′. Both o and o′ are therefore weak operations. From the
merge procedure it follows that if o′ <M o and o <H o′ then
o′ <′H o. H ′ thus violates (C2), a contradiction.

We now show that o and o′ are not in a strong prefix π
of H or H ′. Assume by contradiction that they are. From
Lemmas 17 and 18 and the fact that M is stored by a process
as new strong prefix, π is a prefix of M . If o ∈ π then either
o′ 6∈ π or o <π o′ since (C1) and (C2) are not violated
in π. For the same reason, if o′ is in π then o <π o′. In
all these cases, since π is a prefix of M then o′ 6<M o, a
contradiction. 2

Theorem 5. Causal consistency is satisfied.

Proof. Assume that a process pi is the first process to
violate (C1) or (C2) at time t. A process violated these
properties only when it modifies its local history. If pi ap-
pends an operation it has submitted to its local history, a
contradiction directly follows from the fact that the prior
local history satisfies (C1) and (C2).

If pi violates (C1) or (C2) upon receiving a PUSH or ORD
message m at time t, the new history of pi is the merge
between the old history of pi and the history contained in
the message. Both merged histories are local histories of
processes at a time preceding t so they satisfy (C1) and
(C2). A contradiction follows from Lemma 29.

We now consider the case when pi violates (C1) or (C2)
upon receiving a WREQ(H, o) or SREQ(H, o) message m
at time t. pi merges its history with H and, similar to the
previous case, the result satisfies (C1) and (C2). Also, H
contains all operations o′ such that o′ <C o. Appending o
to the new local history of pi preserves (C1) and (C2).

The last case is that pi violates (C1) or (C2) upon ab-
delivering a PROP or CLOSE-RND message. If the lo-
cal history of pi is modified upon receiving these messages,
then pi stores a new strong prefix for round k and sets
Pj = (H,S, k, h). Let Hn be the result of appending all
operations of S onto H in a deterministic order. Since the
previous local history of pi satisfies (C1) and (C2), it is suf-
ficient from Lemma 29 to show that Hn satisfies these prop-
erties.

If pi has set Pi = (H,S, k, h) then a process ph has abcast
a PROP(H,S, k) message. For each strong operation o ∈ S,
ph has received from the proposer processes histories includ-
ing all operations o′ such that o′ <C o. H is the local history
of ph has merged all these histories and, from Lemma 29,
satisfies (C1) and (C2) and includes all operations causally
dependent on operations in S. From Lemmas 11 and 16, all
the operations in S has not yet been stored by any other
process for any other round. This implies that none of the
operations of S is causally dependent on each other, so Hn
satisfies (C1) and (C2). 2

Theorem 6. Nontriviality, set stability, strong prefix sta-
bility, prefix consistency, strong prefix consistency are always
satisfied.

Proof. We prove that all properties of Eventual Consis-
tency are met. For each process pi and time t, the properties
of S(i, t) are shown for local histories H(i, t). Since only the
content of local histories is ever delivered, and since local
histories are delivered whenever they are modified, this is
equivalent to show the properties for delivered sequences.

Nontriviality: Is trivial from the algorithm and from Lemma 11.
Set stability: Directly follows from the fact that histories

are modified either by appending operations or from merges.
The latter operation returns the union of the merged histo-
ries, so no operation is removed from a history.

Strong prefix stability: Directly follows from Lemma 18.
Strong prefix consistency: Directly follows from Lemma 17.
Prefix consistency: We define Pt as follows. For each op-

eration op stored by a correct process, let t(op) be the time
when op is submitted and p(op) the first correct process stor-
ing op. Pt includes all operations stored by a correct process
such that t ≥ ord(ord(t(op))), as well as the prefix including
op in H(p(op), t(op)), in the order of H(p(op), t(op)).

We first show that Pt satisfies (C1) and is a sequence.
From Lemma 19, all operations that are submitted before
t(op) and that are stored by a correct process are stored by
each correct process at time t′ ≥ ord(t(op)). From strong
prefix consistency and strong prefix stability, the longest
strong prefix of Pt is a prefix of H(i, t′) for each i and t′ ≥ t.
From Lemma 25, the prefix preceding each remaining oper-
ation of Pt in H(i, t′) is equal at each correct process pi at
time t′ ≥ t since t = (ord(ord(t(op))), so Pt is a prefix of
each H(i, t′) with t′ ≥ t.

(C2) can be shown easily because, from (C1), Pt and Pt′
are both prefixes of H(i, t′) for each i. Also, each operation
of Pt is included in Pt′ by definition since t ≤ t′. Therefore,
Pt is a prefix of Pt′ .

As for (C3), it follows from Liveness that all operations
invoked by a correct process are eventually stored by all
other processes. From Lemma 19, all operations stored by a
correct process are eventually stored by each correct process,
so all operations stored by a correct process are included in
some Pt for some t. 2

Theorem 7. Eventual Stability is satisfied if D ∈ 3S.

Proof. Eventual stability after for some t follows from
Lemma 27. 2

Theorem 8. Each weak operation w submitted by a cor-
rect process is eventually stored by each correct process in its
local history.

Proof. Assume a correct process pi submits a weak op-
eration w and some correct process pj never adds it to its
history. Let ld be value of ΩD when the submit event occurs.
The operation w is reliably sent to pld in a WREQ message
m.

If pld suspected by ΩD, pi appends w to its local history.
Eventually pi sends a PUSH(H, d) message with w in H.
Since pi and pj are both correct, the PUSH message is even-
tually delivered. pj then either adds w into its history or w
is already in its history. Therefore, since by contradiction pi
never delivers w, ΩD never suspects pld. By the strong com-
pleteness of D, this implies that pld is correct. The WREQ
message m is thus eventually delivered by pld.

If wait-consensusld is false when m is received by pld, or
it is true, and thus w is included in Wld, but it eventually
becomes false, and thus stop-waiting-consensusld holds, pld



merges the history contained in m with its own, and the
resulting Hld contains w. After this merge, pld eventually
sends a PUSH message containing w to all correct processes,
which eventually receive it and store w in their local history,
a contradiction. Therefore, wait-consensus is always true.
Therefore, it always holds that Qld 6= ⊥ and that Tld is a
majority quorum equal to the current set TSld \ D.

If a majority of correct processes does not exist, then even-
tually |Dld| ≥ dn/2e for strong completeness so |TSld \D| <
dn/2e, a contradiction. Therefore, there exists a major-
ity of correct processes. From Qld 6= ⊥, pld has sent a
PROP(∗, ∗, k) message for some k = kld. If ΩD ∈ Ω, it
follows from Lemma 28 that eventually Qld = ⊥ and thus
wait-consensusld stops holding, a contradiction. Therefore,
ΩD 6∈ Ω.

Since wait-consensus always holds, it always holds that
|Tld| > n/2 and Tld = TSld \ D. From the strong complete-
ness of D, TSld\D eventually only includes the ids of correct
processes. Since Tld = TSld \ D holds forever, Tld contains
the indexes of a majority of correct processes which perma-
nently trust pld. Therefore, ΩD satifies the quorum property
so ΩD ∈ ΩQ. Since there exists a majority of correct pro-
cesses, Ω and ΩQ are equivalent from Lemma 8. This implies
that ΩD ∈ Ω, a contradiction. 2

Theorem 9. If a correct process pi submits a strong op-
eration s, there exists a majority of correct processes, and
either D ∈ 3P or D ∈ 3S and eventually no new weak
operation is submitted, then each correct process eventually
stores s in their history.

Proof. Assume by contradiction that a correct process
pi submits a strong operation s and there exists a correct
process pj which never stores s in its history.

Let pld be the correct leader which is eventually perpetu-
ally trusted by ΩD. If pi or pld ever store s in their history,
we show a contradiction. Let k′ be the round when pi or pld
first store a strong prefix π including s. Each other correct
pj will eventually receive a PUSH(H, d) message from pi or
pld with s in H and d ≥ k′. By Lemma 16, if pj never stores
π then it never stores a strong prefix for round k′ so dj < k′.
When the PUSH message is received then the result of the
merge has π as strong prefix, a contradiction.

Neither pi nor pld thus ever store s in their local history.
After s is submitted, pi sends SREQ(∗, ∗, s) to all processes.
Since pi and pld are correct, this message is eventually re-
ceived by pld. When this happens, pld adds s to Nld. How-
ever s is never added in Hld of pld by contradiction. This
implies that s is always in Nld \Hld.

Let ks be the current value of kld when s is received by
pld. For each value k ≥ ks of kld, eventually pld either
sets kld = k + 1, and thus Qld = ⊥ too, or it abcasts a
PROP(∗, S, k) message with s ∈ S. This follows by simple
induction on the value of kld since Nld \Hld always includes
s, since pld eventually trusts itself permanently, and from
must-propose-new-prefix. Assume that eventually pld sets
kld = k + 1 in the both the aforementioned cases. Since pld
is the permanent leader, it follows from must-propose-new-
prefix that there exists a round k′ such that pld is the only
process abcasting a proposal messages PROP(∗, S, k′) for k′.
Furthermore, abcast terminates since D ∈ 3S implies that
ΩD ∈ Ω and since a majority of correct processes exists.
Since pld is correct, if follows from validity of abcast that
it abdelivers it proposal message and, since this is the only
proposal for k′, that pld is the winner of round k′. Since

eventually kld = k′+1, this implies that pld eventually stores
its proposed strong prefix for round k′. This strong prefix
includes s, a contradiction.

We now show that if pld abcasts a PROP(∗, ∗, k) mes-
sage then eventually kld = k + 1. This would follow from
Lemma 28 if pld would eventually stop modifying its local
history Hld until kld = k + 1. Assume by contradiction
that pld modifies Hld infinitely often and that kld is always
equal to k. A contradiction is easy to see if eventually no
weak operation is submitted. Therefore, it must hold that
D ∈ 3P and that a majority of correct processes exists. In
this case, infinitely many weak operations are received by pld
and inserted in Hld. From must-propose-new-prefix, this im-
plies that the leader abcasts infinitely many PROP(∗, ∗, k)
messages since Q 6= ⊥ after sending the first PROP(∗, ∗, k)
message. However, since pld is perpetually trusted, eventu-
ally every correct process sends a TRUST(pld) message to
pld as last trust message. This implies that the trust set
TSld of pld eventually does not change any longer. Also, it
follows from D ∈ 3P that eventually D outputs exactly the
ids of the faulty processes, so eventually TSld \ Dld > n/2
holds forever and D stops changing. Whenever a new pro-
posal message is abcast by pld, Tld is set to be equal to
TSld \ D, so eventually Tld is equal to TSld \ D forever.
Therefore, eventually wait-consensusld holds forever and pld
stops modifying Hld, a contradiction. 2


