
To Crash or Not To Crash: Efficient Modeling of
Fail-Stop Faults

Habib Saissi†, Péter Bokor†, Marco Serafini‡ and Neeraj Suri†

†Technische Universität Darmstadt, Germany
{pbokor,saissi,suri}@cs.tu-darmstadt.de

‡Yahoo! Research, Barcelona, Spain
serafini@yahoo-inc.com

Abstract. A commonly used approach in practical verification is to ver-
ify a simplified model of the system rather than the system itself, which
would entail infeasible verification complexity. This paper introduces a
model for efficient model checking of message-passing systems with crash
faults. The key to the achieved efficiency is the intuition that the event
of process crash can be omitted in the model as crashed processes can be
mimicked by “slow” ones. We formally prove this intuition for a general
class of systems and their specifications.
We evaluate model checking efficiency using two models, one where crash
events are modeled as separate state transitions (explicit model) and an-
other where these events are omitted (implicit model). Our experiments
with widely-used and representative protocol examples show significant
reductions of model checking memory and time when using the implicit
model instead of the explicit one.

1 Introduction

Fault-tolerance is a general concept for building dependable systems. It guar-
antees that the system delivers correct service despite the presence of faults.
Usually, the behavior and number of faults is restricted by a fault-model, which
is a set of assumptions about the system and its environment. For example, the
Paxos protocol [12] delivers consensus (the service) as long as faulty processes
fail by crashing. Of course, this concept is valid only if the system that imple-
ments fault-tolerance is not faulty itself. For example, faulty implementations of
Paxos fail to deliver consensus even if the fault-model is respected [14].

Model checking [10] can be used to automatically verify that fault-tolerance
is implemented correctly. As the efficiency of model checking decreases with
increasing state space sizes, its applicability is limited to small (sub-)systems
or to simplified models of the real system. These represent different use-cases of
model checking, which can contribute to the correctness of the system in different
ways. For example, model checking a faithful model of the system can help fast
prototyping and verifying conceptual designs.

In this paper, we propose a model for efficient model checking of message-
passing systems with crash faults. These systems see more and more applications

given that (a) message-passing is an intuitive communication model [3, 1] and
(b) the crash fault-model is a widely-applied abstraction in the current practice
of reliable systems [7]. We expect every verification method to be sound, i.e.,
it does not miss bugs in the system. In order to ensure that model checking
using our proposed model is sound, we compare it with a reference model of
crash events, which we adapt from [3]: A crashed process stops receiving and
processing messages in the future; if a process crashes during sending messages,
only a subset of these messages might be sent. We call this reference model
explicit because a crash event is modeled via an explicit state transition that
drives the system from a state where the process is correct into a state where
this process is crashed.

The explicit model yields large state spaces because crash events are inter-
leaved, i.e., executed concurrently, with other events. In order to mitigate this
state space explosion, we leverage the intuition that slow processes cannot be
distinguished from crashed ones. We carefully investigate models of computation
and communication to verify this intuition. For example, the intuition does not
hold if a protocol inherently relies on crash events (e.g., using failure detectors
[8]) or if the property under verification explicitly mentions crashes.

We call a model without crash events implicit because it can mimic the effect
of crashes through the above intuition. We formally prove the soundness (and
completeness) of the implicit model by showing that the truth of a general class
of properties is indistinguishable in the explicit and implicit models.

The explicit model is exponentially larger than the implicit model. This expo-
nential blow can be further worsened in practical model checking, where storing
and comparing states (stateful optimization) is hard or even impossible. On the
other hand, reductions (such as symmetry or partial order reductions [10]) can be
used to prune the state space that actually needs to be explored. As a practical
implication of our equivalence result, we model check representative message-
passing protocols and measure the realized benefit of using the implicit model
instead of the explicit one.

In summary, we make the following specific contributions:

– We define a formal model eligible for model checking systems where processes
communicate via messages and might fail by crashing. First, we adopt a
model from [3] (Section 2) and use it as a reference model to show the
soundness of our proposed, simplified model. We call this reference model
explicit because it explicitly models the event of crashing. We define a model,
called implicit model, by simply removing crash events from the explicit
model (Section 3).

– We formally prove that the implicit model preserves arbitrary LTL (Linear
Temporal Logic) properties [10] of the explicit model if these properties
do not depend on (i) the crash status of some process and (ii) the set of
undelivered messages (Section 4). This class of properties is general and
expressive enough to specify standard properties of fault-tolerant message-
passing protocols, e.g., consensus, or variants of linearizability.

– We use MP-Basset [5], a SW model checker for message-passing systems, to
model check the explicit and implicit models of representative crash-tolerant
protocols (Section 5). Using the stateful and partial-order reduced optimiza-
tions of MP-Basset, our experiments show that model checking the explicit
model results in state space explosion, even with relaxed forms of the crash-
fault semantics. At the same time, the implicit model enables feasible model
checking of the same protocol instances.

2 A Formal Model of Message-Passing Systems

We start by recalling a formal model of general message-passing systems (Section
2.1) and a suitable property language (Section 2.2). The precise semantics of the
formalism is given via state graphs (Section 2.3).

2.1 Basic Message-Passing Model

Conceptually, we adopt the formal model of message-passing system (MP sys-
tem) from [3]. Strictly speaking, the following model is taken from [4, 5], which
was shown to be equivalent with the model in [3] but better suited for model
checking.

An MP system consists of n processes that communicate via messages. Mes-
sages are sent between processes via channels according to a network topology.
Every two processes i and j that are connected via a channel from i to j maintain
a buffer buf i,j , which is a set of messages for storing undelivered messages sent
from process i to process j. The buffer buf i,j is called the outgoing (incoming)
buffer of process i (j).

Every process i maintains a local state from a set Qi. The state of the system
is a tuple s = (q1, q2, ..., qn, b1, ..., bm), where qi ∈ Qi for all 1 ≤ i ≤ n and
b1, ..., bm are the buffers of the system.

Transitions between the states of an MP system are modeled through events.
The execution of an event denoted by compi (short for computation) involves the
following indivisible (atomic) change to the system: a (maybe empty) subset of
the messages is removed from the union of all incoming buffers of i, the current
local state qi is changed to a (maybe the same) state from Qi, and some (maybe
zero) messages are added to the output buffers of i. Every event is associated
with a guard, which is a predicate that depends only on a subset of the union of
the incoming buffers and the local state of the process. The event can only be
executed if the guard evaluates to true. In this case, we say the event is enabled
in the current state. Otherwise, the event is disabled.

The set of all events is denoted as COMP = ∪n
i=1COMP i, where COMP i is

the set of all events executed by i.

An initial state of the system is the state before the execution of any event.
We assume that channels are empty in initial states.

2.2 Property Language: Temporal Logic

Properties that the system is expected to fulfill are interpreted over runs. A run
of a message-passing system is a sequence of states s0, s1, ... such that s0 is an
initial state and, for i > 0, the state si is the state resulting of the execution of
an event compi in si−1 such that compi is enabled in si−1. We call si a reachable
state. By convention, initial states are also reachable.

The most simple properties specify single states. This requires the definition
of a labeling function, which assigns atomic propositions from a set AP to each
state. Formally, the labeling function is defined as L : S −→ 2AP , where S de-
notes the set of all states. For example, atomic propositions combined with the
usual Boolean connectives can be used to define invariants, a simple and expres-
sive set of properties. A property is an invariant if it holds in every reachable
state.

We adopt Linear Temporal Logic (LTL) [10] to specify temporal properties. In
addition to atomic propositions and Boolean connectives, LTL defines temporal
operators. For example, the operator F (“eventually” or “future”) asserts that
a property will hold in a state that is reachable (along a run) from the current
state. As an example LTL formula, consider Fp. This formula expresses liveness,
i.e., some atomic proposition p (“something good”) must hold after the execution
of an indefinite number of events.

2.3 Kripke Structure : Syntax & Semantics

We use the standard semantics of LTL [10]. As it is based on a Kripke structure,
we associate MP systems with Kripke structures. A Kripke structure is a tuple
(S, S0, T, AP,L), where S is a set of states, S0 ⊆ S is a set of initial states,
T ⊆ S × S is a set of transitions, AP is a set of atomic propositions, and L
is a labeling function. Given an MP system M with (initial) state set S (S0),
and atomic propositions AP , and labeling function L, we associate with M the
Kripke structure MKS = (S, S0, T, AP,L), where (s, s′) ∈ T iff there is an event
comp of the MP system such that comp is enabled in s and executing comp in
s results in s′.

As a result, a run of the MP system M is a run (also called path [10]) of the
Kripke structure MKS and the standard semantics of LTL specifications can be
applied. As this semantics assumes infinite runs, we define an additional event,
called dummy event and denoted dum. The dummy event is enabled in every
state and its execution does not alter the state of the system. Note that without
the dummy event it is possible that no event is enabled in a state, resulting in
finite runs.

3 MP Systems with Crash Faults

In this Section, we define MP systems where processes can crash. In the crash
fault-model, a process can stop receiving, processing, and sending messages, and

it remains doing so forever. If the process crashes during the execution of an
event, it executes the event as in the fault-free case except that it sends a subset
of the messages that it was supposed to send [3].

Formally, given an MP system M , we define another MP system crash M by
adding crash events. Note that we stay in the realm of MP systems (as defined
in Section 2) without extending neither their syntax nor semantics.

The MP system crash M is identical with M except the following changes.
In addition to a state from Qi, the local state of process i (for every 1 ≤ i ≤ n)
contains a crash flag, which takes its values from {⊥,⊤}. The value ⊥ means
that process i is crashed, otherwise the flag’s value assumes ⊤. Formally, the
local state of a process i is a tuple qci = (qi, ci), where qi ∈ Qi and ci is the crash
flag of i. The set of events in crash M is COMP c = ∪n

i=1COMP c
i , where, for

every process i, COMP c
i = Ei ∪ CEi such that

– Ei = {comp′|comp ∈ COMPi such that comp′ is identical with comp and
comp′ does not change ci},

– CEi = {compc|comp ∈ COMPi such that compc is identical with comp
and, when executed in a state, compc sets ci = ⊥ and MSGc ⊆ MSG where
MSG and MSGc are the sets of messages sent by comp and compc}.

Intuitively, crash M inherits the events in Ei from the fault-free M , while CEi

contains the crash-faulty variants of these events. We call compc in CEi crash-
induced non-atomic send if MSGc ⊂ MSG and MSGc ̸= ∅.

In addition, an event in crash M can only be executed by some process i if
the crash flag ci assumes ⊤. Formally, the guard of every event is extended with
an additional condition (conjunct) defined as ci = ⊤.1

4 The Equivalence of Explicit and Implicit Models

Given an MP system M , we call crash M an explicit model of crash faults. In
contrast, M itself is an implicit model as no state transition directly models the
crash of a process.

We first define a general equivalence between state graphs (Section 4.1),
which we use to show as a special case that an explicit and the corresponding
implicit models are equivalent (Section 4.2).

4.1 General Equivalence Basis

First, we define an equivalence relation between runs of Kripke structures. Intu-
itively, two runs are equivalent if they are of the same length and the ith states
in both runs are labeled the same.

Definition 1 Given two Kripke structures M = (S, S0, T, AP,L) and M ′ =
(S′, S′

0, T
′, AP, L′), a run σ = s0, s1, ... in M is said to be label-equivalent with

another run σ′ = s′0, s
′
1, ... in M ′ iff for every i = 0, 1, ..., L(si) = L′(s′i). In this

case, we write σ ≈AP σ′.

1 Note that the guard of the dummy event (see Section 2.3) must not be changed.

The previous definition can be naturally generalized to the label-equivalence
of two Kripke structures.

Definition 2 Given two Kripke structures M = (S, S0, T, AP,L) and M ′ =
(S′, S′

0, T
′, AP, L′), they are said to be label-equivalent iff the following two con-

ditions hold:

– For every run σ in M , there exists a run σ′ in M ′ so that σ ≈AP σ′.
– For every run σ′ in M ′, there exists a run σ in M so that σ ≈AP σ′.

The next corollary follows from the above definitions and the semantics of
LTL [10]. It says that the truth of an arbitrary LTL property is indistinguishable
in label-equivalent Kripke structures. The notationM |= ϕmeans that the (LTL)
formula ϕ holds for every run of the (Kripke structure) model M .

Corollary 1 [10] Given two label-equivalent Kripke structures M and M ′ and
a LTL formula ϕ, the following holds:

M |= ϕ iff M ′ |= ϕ .

Proof. The ⇒ direction: Assume that M ′ ̸|= ϕ. Therefore, there must be a run
σ′ in M ′ such that σ′ ̸|= ϕ. Since M and M ′ are label-equivalent, there is a run
σ in M such that σ and σ′ are label-equivalent. By definition, σ and σ′ are of
the same length and the corresponding states are labeled the same. This implies
that σ ̸|= ϕ [10], a contradiction.

The reverse direction can be similarly proven.

4.2 The Equivalence Theorem

In this section, we prove the label-equivalence between an MP system M and
its crash-augmented version crash M . More precisely, we show label-equivalence
between their Kripke structure counterparts.

To this end, we first define a special labeling function for MP systems, which
is independent of the crashed status of processes and undelivered messages.

Definition 3 Given an MP system M , a set of atomic propositions AP , the
Kripke structure (S, S0, T, AP,L) associated with M , and the Kripke structure
(S′, S′

0, T
′, AP, L′) associated with crash M , L and L′ are crash/buffer

-independent, if for all s = (q1, ..., qn, b1, ..., bm) ∈ S and s′ = ((q1, c1), ..., (qn, cn),
b′1, ..., b

′
m)) ∈ S′, L(s) = L′(s′).

The following theorem states our main result, which together with Corollary
1 imply that an LTL formula holds for M iff it holds for crash M .

Theorem 1 Given an MP system M , a set of atomic propositions AP , the
Kripke structure MKS = (S, S0, T, AP,L) associated with M , and the Kripke
structure M c

KS = (S′, S′
0, T

′, AP, L′) associated with crash M , if L and L′ are
crash/buffer-independent, then MKS and M c

KS are label-equivalent.

Proof. Let σ = s0, s1, ... and σ′ = s′0, s
′
1, ... are runs of MKS and M c

KS , respec-
tively. The proof is by induction on the length of the prefixes of σ and σ′. Given
a prefix of σ (and σ′), we construct a prefix of a run in M c

KS (in MKS) such
that label-equivalence holds for these prefixes. Then, label-equivalence between
σ (and σ′) and the constructed run follows by induction.

The ⇒ direction. Intuitively, we construct a run σ′ in crash M such that the
events executed in M and crash M are the same. In other words, crash M
simulates the non-faulty M .

Consider the prefix s0, s1 of σ as the base case. We know that s0 = (q1, ..., qm,
b1, ..., bm) ∈ S0. In our construction, let s′0 = ((q′1, c1), ..., (q

′
n, cn), b

′
1, ..., b

′
m)

be from S′
0 such that s0 and s′0 are matching, i.e., q1 = q′1, ..., qn = q′n and

b1 = b′1, ..., bm = b′m. Now, let comp be an event in M such that executing
it in s0 results in s1. If comp is a dummy event, then we construct s′1 such
that s′1 = s′0. Otherwise, if comp is executed by process i, then let comp′ be
a matching event with comp, i.e., comp′ is the event corresponding to comp as
defined by Ei. Given that s1 = (qq1, ..., qqn, bb1, ..., bbm), let in our construction
s′1 = ((qq1, cc1), ..., (qqn, ccn), bb1, ..., bbm) be the state resulting from the execu-
tion of comp′ in s′0. Note that comp′ is enabled in s′0 because s′0 ∈ S0 and so
ci = ⊤. Furthermore, since comp and comp′ are matching, there is an execution
of comp′ satisfying that s1 and s′1 are matching over the local states of processes
and the content of buffers. Since L and L′ are crash/buffer-independent, we have
that L(s0) = L′(s′0) and L(s1) = L′(s′1).

In the induction step, assume that there is a run in crash M with pre-
fix s′0, s

′
1, ..., s

′
k that is label-equivalent with s0, s1, ..., sk. Let sk be the tuple

(q1, ..., qm, b1, ..., bm). By construction, we have that s′k = ((q1, c1), ..., (qn, cn),
b1, ..., bm). The construction of s′k+1 is analogous to that of s′1. Note that comp′

is enabled because ci = ⊤ for all 1 ≤ i ≤ n. This is because our construction
selects comp′ from Ei, thus, the value of ci remains unchanged.

The ⇐ direction. Intuitively, we construct a run σ in M such that crashing and
non-crashing events are replaced by there matching counterparts in M , i.e, non-
faulty events that receive/send the same messages and perform the same local
state transition.

Let s′0, s
′
1 be a prefix of σ′ where s′0 = ((q1, c1), ..., (qn, cn), b1, ..., bm). Then,

let s0 = (q1, ..., qn, b1, ..., bm) from S0. We know that such s0 exists by construc-
tion of crash M . Since L and L′ are crash/buffer-independent, we have that
L′(s′0) = L(s0).

Now, let e be the event in crash M that results in s′1 when executed s′0.
Similarly to the first part of the proof (⇒ direction), in case e = dum and
e = comp′ ∈ Ei, the corresponding event in M is dum and the matching
comp that is used to construct s1 when executed in s0. If e = compc ∈ CEi,
then consider the matching event comp as defined by CEi. Let s

′
1 be the tuple

((qq1, cc1), ..., (qqn, ccn), bb1, ..., bbm). We construct s1 = (qq1, ..., qqn, bb
′
1, ..., bb

′
m)

as the state resulting from the execution of comp in s0. Note that the content of
the buffers may be different, more precisely bbj ⊆ bb′j for all 1 ≤ j ≤ m, if compc

is a crash-induced non-atomic send. As L and L′ are crash/buffer-independent,
L′(s′1) = L(s1) holds.

By the induction hypothesis, there is a run in M with prefix s0, ..., sk that is
label-equivalent with s′0, ..., s

′
k. By construction, given s′k = ((q1, c1), ..., (qn, cn),

b1, ..., bm), we have that sk = (q1, ..., qn, b
′
1, ..., b

′
m) and bj ⊆ b′j for all 1 ≤ j ≤ m.

The construction of sk+1 is similar to that of s1. Note that the matching comp
can always be executed in sk because the buffers in sk contains at least those
messages in s′k.

4.3 Implications of Different Buffer Models

Our model of MP systems from Section 2 assumes that every buffer is an infinite
set of messages. As some applications might require modeling finite buffers, we
now discuss how modeling finite buffers affects our equivalence result.

We consider two models of finite buffers. In the first model, a (non-dummy)
event can only be enabled if all buffers that this event sends messages to have
the capacity of delivering (storing) these messages. The proof of Theorem 1 can
be easily modified using this model of finite buffers.

In the second model, a message m in a full buffer buff can be overwritten
by a message m′ that is sent via this buffer. This means that m will be lost
and replaced by m′ in buff. It turns out that the construction used in the proof
of Theorem 1 does not work with this model of finite buffers. The problem is
that these non-atomic send events can result in overwriting a subset of those
messages that are overwritten in the non-faulty model. This might result in a
process entering a local state that is unreachable for this process in the non-
faulty model, thus, invalidating the equivalence result. Note that in our model
with infinite buffers all messages that are available in crash M are also available
in M , a property that does not hold using the second model of finite buffers.

5 Experiments: Model Checking Efficiency with Explicit
and Implicit Models

Evaluation objective. Given an MP system with n processes, the explicit model is
at least 2n times larger than the implicit model. This is because for every every
state in the implicit model there are 2n corresponding states in the explicit
model where every process can be crashed or alive. The exponential blow is
further worsened by non-atomic sends. For simplicity, we consider a relaxed
crash-model semantics where non-atomic sends are assumed not to happen.

Ideally, the size of a model is proportional with model checking memory and
time. However, practical model checking can distort this trend. Firstly, a model
checker might visit the successors of a state many times if this state is reachable
through multiple runs. The reason for this is that storing and comparing states in
stateful model checking [10] might be inefficient or even impossible given pow-
erful specification languages [11]. Secondly, different reduction techniques [10]

enable sound verification by exploring only a fraction of the model. Depending
on the system, one model can be better “reducable” than another.

Focusing on stateful and partial-order reduced [10] optimizations of model
checking, our objective is to show that model checking the explicit model is
exponentially more expensive (in terms of memory and time) than the implicit
model. This would demonstrate the practicability of our equivalence result.

Example protocols. We consider two representative crash-tolerant protocols, i.e.,
they satisfy their specifications under the assumption that processes can only
fail by crashing:

1. The Paxos protocol solves consensus, a fundamental primitive that can
be used to implement state-machine replication [12]. Intuitively, consensus
means that at most one value is “chosen”, i.e., all processes agree on this
value.

2. Our second example is regular storage protocol in the style of [2]. The ob-
jective of distributed storage is to reliably store data despite failures of the
base (storing) objects. A regular storage guarantees that a read operation
returns a value not older than the one written by the latest preceding write
operation.

For debugging purposes, we inject faults into (a) correct processes and (b)
the specification of the protocols and show that the model checker is able to find
the bugs. In particular, we specify two faulty versions of Paxos, namely “Faulty
Paxos” and “Faulty Paxos 2”. For storage we require that a read operation that
completes after a write has to return the value written by the write even if
the two operations are concurrent (“Wrong Regularity”). More details and the
source of these models can be found at [16].

Setup: tools, resources, and metrics. We use the MP-Basset model checker [5, 16]
to conduct our experiments. MP-Basset is a model checker for message-passing
systems implementing the following optimizations: stateful model checking via
Java Pathfinder [15] and highly customizable static partial-order reduction [6]. In
our experiments, partial-order reduction is customized for message-passing (read
more details in Section 6). The experiments are run in the DETER testbed [17]
on 2GHz Xeon machines with 4GB memory.

We measure model checking memory (the number of visited states) and time
for each experiment. In the explicit model, we gradually add 1, 2, ... crash-prone
processes and run a new experiment. In case of faulty protocols and specifica-
tions, the model checker stops at finding the first counterexample. Therefore,
these searches are not exhaustive.

The model checker returns OK if the specification holds for the protocol. Oth-
erwise, a counterexample (CE), i.e., a run violating the specification, is given.
We add up to three (two) crashes for the OK (CE) cases. The reason of run-
ning more experiments without bugs is to measure how adding new crash-faulty
processes affects the size of the explicit model.

Explicit model Implicit modelProtocol
Spec. Result

(# processes)
crashes States Time States Time

1 1,541,622 9h50m
548,961 3h18m

Paxos (6) Safety OK 2 4,216,431 27h44m
3 11,843,034 83h

Faulty Paxos (6) Safety CE
1 14,785 4m49s

3,415 1m40s
2 33,598 10m53s

Faulty Paxos 2 (7) Safety CE
1 1,442,262 12h20m

173,414 1h28m
2 3,047,842 25h40m
1 56,508 16m36s

Register (5) Regularity OK 2 128,697 40m50 18,451 4m32s
3 301,562 1h40m

Register (5)
Wrong

CE
1 9,781 2m45

3,497 55s
regularity 2 1,213 29s

Register (6)
Wrong

CE
1 18,272 7m

6,987 2m32s
regularity 2 42,506 15m

Table 1: Stateful and partial-order reduced state space exploration results with
implicit and explicit models using the MP-Basset model checker.

Experimental results. Our results are shown in Table 1. We model check only
meaningful instances of both protocols, i.e., at most one fault is tolerated. For
each experiment, we emphasize the best result (least model checking memory
and time) using bold text. We observe the following trends:

– The implicit model is more efficient than the explicit one in all except one
experiments. In this one experiment the model checker finds the bug slightly
faster using the explicit model. As the CE experiments are non-exhaustive,
finding counterexamples quickly depends on how the model checker schedules
events. In MP-Basset, the additional (crash) events in the explicit model
affect this scheduling, as shown by our experiments. Heuristics can be used
to “guide” the model checker towards the bug [13].

– Model checking memory and time of the explicit model is exponential in
the number of crash-faulty processes compared to the implicit model. This
trend is also depicted in Figure 1, where we show the number of states in the
explicit model as a function of n, where n is the number of crashes. Note that
the number of states grows even faster than 2n. Again, this ideal formula is
biased by the imperfect stateful optimization and partial-order reduction.

6 Related Work

Our reduction from the explicit to the implicit model allows sound and also
complete verification of the specified class of properties (LTL with crash/buffer-
independent labeling function). Although other reduction techniques such as
symmetry or partial-order reductions [10] apply for a more general class of sys-
tems, they require manual intervention of the user. These techniques are orthog-
onal to the explicit/implicit model of crashes and can be applied for further
reductions of both models.

104

105

106

107

108

0 1 2 3

#
S
ta
te
s

Crashing processes

Implicit

Implicit

Expl
icit

Expl
icit

Register(5) OK
Paxos(6) OK

Fig. 1: The size of the explicit model as a function of the number of crashes.

In our experiments, we use partial-order reduction of both the explicit and im-
plicit models. We apply this reduction for message-passing systems as proposed
in [6]. For the explicit model, we extend the partial-order reduction with crash
events and use the flexible and intuitive framework of [6] to prove the soundness
of the reduction. Intuitively, we define events that are “non-interfering” with
crash events, which is key to partial-order reduction. For example, a crash event
ec is non-interfering with every other event e in the sense that if e is disabled in
a state, then it will remain so after the execution of ec.

Another related reduction approach is [9], which reduces from a fine-grained
model to a stuttering-equivalent coarse-grained model to allow efficient model
checking. Although the underlying model is message-passing with crash faults, it
assumes (synchronous) round-based communication and crashed-faults are ex-
pressed through so called Heard-Of sets. Our equivalence result does not directly
apply under these assumptions but, instead, under the general model of [3].

7 Conclusion

We have defined a formal model that allows efficient model checking of message-
passing systems with crash faults. The proposed model is a reduction from a
detailed (and obviously sound) model and it accounts for sound verification

for a certain class of properties. Natural extensions of our approach include
reductions for other fault-models (such as non-silent malicious faults) or proving
the equivalence with respect to more general temporal logics (such as branching-
time logics).

We see the strength of our contribution on the practical side. Our equivalence
result formally verifies the natural intuition that crash events need not be mod-
eled explicitly. Therefore, system designers can use this as a formal argument
(rather than as “reasonable simplification”) in the development and certification
process. These are small but important steps towards scalable verification of real
systems.

References

1. G. Agha, I.A. Mason, S. Smith, C. Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 7(1): 1–72, 1997.

2. H. Attiya, A. Bar-Noy, D. Dolev. Sharing Memory Robustly in Message-Passing
Systems. J. ACM, 42(1):124–142, 1995.

3. H. Attiya, J. Welch. Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. Wiley Series on Parallel and Distributed Computing, 2004.

4. P. Bokor, M. Serafini, N. Suri, On Efficient Models for Model Checking Message-
Passing Distributed Protocols, IFIP Int. Conf. on Formal Techniques for Dis-
tributed Systems (FMOODS & FORTE), pages 216-223, 2010.

5. P. Bokor, J. Kinder, M. Serafini, N. Suri. Efficient Model Checking of Fault-
Tolerant Distributed Protocols. DSN-DCCS, 2011, To appear.

6. P. Bokor, J. Kinder, M. Serafini, N. Suri. Supporting Domain-Specific State Space
Reductions through Local Partial-Order Reduction. Technische Universität Darm-
stadt, Technical Report, 2011.

7. K. Birman. Reliable Distributed Systems: Technologies, Web Services, and Appli-
cations, Springer, 2005.

8. T.D. Chandra, S. Toueg Unreliable Failure Detectors for Reliable Distributed
Systems. J. ACM, 43(2):225–267, 1996.

9. M. Chaouch-Saad, V. Charron-Bost, S. Merz. A Reduction Theorem for the Veri-
fication of Round-Based Distributed Algorithms. Proc. Reachability Problems, pp.
93–106, 2009.

10. E. Clarke, O. Grumberg, D. Peled. Model Checking, MIT Press, 2000.
11. P. Godefroid. Model checking for programming languages using VeriSoft. POPL,

pp. 174–186, 1997.
12. L. Lamport. The Part-time Parliament. ACM Trans. Comp. Sys., 16(2):133–169,

1998.
13. M. Talupur, H. Han. Biased Model Checking Using Flows. TACAS, pp. 239–253,

2011.
14. J. Yang et al. MODIST: Transparent Model Checking of Unmodified Distributed

Systems. NSDI, pp. 213–228, 2009.
15. http://babelfish.arc.nasa.gov/trac/jpf
16. http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/
17. http://www.isi.deterlab.net/

