
Piggybacking on Social Networks∗

Aristides Gionis
Aalto University and HIIT

Espoo, Finland

aristides.gionis@aalto.fi

Flavio Junqueira
Microsoft Research

Cambridge, UK

fpj@microsoft.com

Vincent Leroy
Univ. of Grenoble – CNRS

Grenoble, France
vincent.leroy@imag.fr

Marco Serafini
QCRI

Doha, Qatar
mserafini@qf.org.qa

Ingmar Weber
QCRI

Doha, Qatar
ingmarweber@acm.org

ABSTRACT
The popularity of social-networking sites has increased rapidly over
the last decade. A basic functionalities of social-networking sites is
to present users with streams of events shared by their friends. At a
systems level, materialized per-user views are a common way to as-
semble and deliver such event streams on-line and with low latency.
Access to the data stores, which keep the user views, is a major bot-
tleneck of social-networking systems. We propose to improve the
throughput of these systems by using social piggybacking, which
consists of processing the requests of two friends by querying and
updating the view of a third common friend. By using one such
hub view, the system can serve requests of the first friend with-
out querying or updating the view of the second. We show that,
given a social graph, social piggybacking can minimize the overall
number of requests, but computing the optimal set of hubs is an
NP-hard problem. We propose an O(logn) approximation algo-
rithm and a heuristic to solve the problem, and evaluate them using
the full Twitter and Flickr social graphs, which have up to billions
of edges. Compared to existing approaches, using social piggy-
backing results in similar throughput in systems with few servers,
but enables substantial throughput improvements as the size of the
system grows, reaching up to a 2-factor increase. We also evaluate
our algorithms on a real social networking system prototype and
we show that the actual increase in throughput corresponds nicely
to the gain anticipated by our cost function.

1. INTRODUCTION
Social networking sites have become highly popular in the past

few years. An increasing number of people use social network-
ing applications as a primary medium of finding new and inter-
esting information. Some of the most popular social networking
applications include services like Facebook, Twitter, Tumblr or Ya-
hoo! News Activity. In these applications, users establish connec-
tions with other users and share events: short text messages, URLs,

∗Work conducted while the authors were with Yahoo! Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 6
Copyright 2013 VLDB Endowment 2150-8097/13/04... $ 10.00.

photos, news stories, videos, and so on. Users can browse event
streams, real-time lists of recent events shared by their contacts,
on most social networking sites. A key peculiarity of social net-
working applications compared to traditional Web sites is that the
process of information dissemination is taking place in a many-
to-many fashion instead of the traditional few-to-many paradigm,
posing new system scalability challenges.

In this paper, we study the problem of assembling event streams,
which is the predominant workload of many social networking ap-
plications, e.g., 70% of the page views of Tumblr.1 Assembling
of event streams needs to be on-line, to include the latest events for
every user, and very fast, as users expect the resulting event streams
to load in fractions of a second.

To put our work in context and to motivate our problem def-
inition, we describe the typical architecture of social networking
systems, and we discuss the process of assembling event streams.
We consider a system similar to the one depicted in Figure 1. In
such a system, information about users, the social graph, and events
shared by users are stored in back-end data stores. Users send re-
quests, such as sharing new events or receiving updates on their
event stream, to the social networking system through their browsers
or mobile apps.

A large social network with a very large number of active users
generates a massive workload. To handle this query workload and
optimize performance, the system uses materialized views. Views
are typically formed on a per-user basis, since each user sees a
different event stream. Views can contain events from a user’s
contacts and from the user itself. Our discussion is independent
of the implementation of the data stores; they could be relational
databases, key-value stores, or other data stores.

The throughput of the system is proportional to the data trans-
ferred to and from the data stores; therefore, increasing the data-
store throughput is a key problem in social networking systems.2

In this paper, we propose optimization algorithms to reduce the
load induced on data stores—the thick red arrows in Figure 1. Our
algorithms make it possible to run the application using fewer data-
store servers or, equivalently, to increase throughput with the same
number of data-store servers.

Commercial social networking systems already use strategies to
send fewer requests to the data-store servers. A system can group
the views of the contacts of a user in two user-specific sets: the
push set, containing contact views that are updated by the data-

1http://highscalability.com/blog/2012/2/13/tumblr-architecture-
15-billion-page-views-a-month-and-harder.html
2http://www.facebook.com/note.php?note id=39391378919

409

front&end)

user)

Social'networking'system'

data)store)clients)
(applica2on)logic))

social)graph) data)stores)
(user)views))

…
)

Figure 1: Simplified request flow for handling event streams in
a social networking system. We focus on reducing the through-
put cost of the most complex step: querying and updating data
stores (shown with thick red arrows).

store clients when the user shares a new event, and the pull set, con-
taining contact views that are queried to assemble the user’s event
stream. The collection of push and pull sets for each user of the sys-
tem is called request schedule, and it has strong impact on perfor-
mance. Two standard request schedules are push-all and pull-all.
In push-all schedules, the push set contains all of user’s contacts,
while the pull set contains only the user’s own view. This schedule
is efficient in read-dominated workloads because each query gen-
erates only one request. Pull-all schedules are specular, and are
better suited for write-dominated workloads. More efficient sched-
ules can be identified by using a hybrid approach between pull- and
push-all, as proposed by Silberstein et al. [11]: for each pair of con-
tacts, choose between push and pull depending on how frequently
the two contacts share events and request event streams. This ap-
proach has been adopted, for example, by Tumblr.

In this paper we propose strictly cheaper schedules based on so-
cial piggybacking: the main idea is to process the requests of two
contacts by querying and updating the view of a third common con-
tact. Consider the example shown in Figure 2. For generality, we
model a social graph as a directed graph where a user may follow
another user, but the follow relationship is not necessarily symmet-
ric. In the example, Charlie’s view is in Art’s push set, so clients
insert every new event by Art into Charlie’s view. Consider now
that Billie follows both Art and Charlie. When Billie requests an
event stream, social piggybacking lets clients serving this request
pull Art’s updates from Charlie’s view, and so Charlie’s view acts
as a hub. Our main observation is that the high clustering coeffi-
cient of social networks implies the presence of many hubs, making
hub-based schedules very efficient [10].

Social piggybacking generates fewer data-store requests than ap-
proaches based on push-all, pull-all, or hybrid schedules. With a
push-all schedule, the system pushes new events by Art to Billie’s
view—the dashed thick red arrow in Figure 2(b). With a pull-all
schedule, the system queries events from Art’s view whenever Bil-
lie requests a new event stream—the dashed double green arrow
in Figure 2(b). With a hybrid schedule, the system executes the
cheaper of these two operations. With social piggybacking, the
system does not execute any of them.

Using hubs in existing social networking architectures is very
simple: it just requires a careful configuration of push and pull sets.
In this paper, we tackle the problem of calculating this configura-
tion, or in other words, the request schedule. The objective is to
minimize the overall rate of requests sent to views. We call this
problem the social-dissemination problem.

Our contribution is a comprehensive study of the problem of
social-dissemination. We first show that optimal solutions of the
social-dissemination problem either use hubs (as Charlie in Fig-

ure 2) or, when efficient hubs are not available, make pairs of users
exchange events by sending requests to their view directly. This
result reduces significantly the space of solutions that need to be
explored, simplifying the analysis.

We show that computing optimal request schedules using hubs is
NP-hard, and we propose an approximation algorithm, which we
call CHITCHAT. The hardness of our problem comes from the set-
cover problem, and naturally, our approximation algorithm is based
on a greedy strategy and achieves an O(logn) guarantee. Apply-
ing the greedy strategy, however, is non-trivial, as the iterative step
of selecting the most cost-effective subset is itself an interesting op-
timization problem, which we solve by mapping it to the weighted
densest-subgraph problem.

We then develop a heuristic, named PARALLELNOSY, which can
be used for very large social networks. PARALLELNOSY does not
have the approximation guarantee of CHITCHAT, but it is a parallel
algorithm that can be implemented as a MapReduce job and thus
scales to real-size social graphs.

CHITCHAT and PARALLELNOSY assume that the graph is static;
however, using a simple incremental technique, request schedules
can be efficiently adapted when the social graph is modified. We
show that even if the social graph is dynamic, executing an initial
optimization pays off even after adding a large number of edges to
the graph, so it is not necessary to optimize the schedule frequently.

Evaluation on the full Twitter and Flickr graphs, which have bil-
lions of edges, shows that PARALLELNOSY schedules can improve
predicted throughput by a factor of up to 2 compared to the state-
of-the-art scheduling approach of Silberstein et al. [11].

Using a social networking system prototype, we show that the
actual throughput improvement using PARALLELNOSY schedules
compared to hybrid scheduling is significant and matches very well
our predicted improvement. In small systems with few servers the
throughput is similar, but the throughput improvement grows with
the size of the system, becoming particularly significant for large
social networking systems that use hundreds of servers to serve
millions, or even billions, of requests.3 With 500 servers, PARAL-
LELNOSY increases the throughput of the prototype by about 20%;
with 1000 servers, the increase is about 35%; eventually, as the
number of server grows, the improvement approaches the predicted
2-factor increase previously discussed. In absolute terms, this may
mean processing millions of additional requests per second.

We also compare the performance of CHITCHAT and PARAL-
LELNOSY on large samples of the actual Twitter and Flickr graphs.
CHITCHAT significantly outperforms PARALLELNOSY, showing
that there is potential for further improvements by making more
complex social piggybacking algorithms scalable.

Overall, we make the following contributions:
• Introducing the concept of social piggybacking, formalizing the

social dissemination problem, and showing its NP-hardness;
• Presenting the CHITCHAT approximation algorithm and show-

ing its O(logn) approximation bound;
• Presenting the PARALLELNOSY heuristic, which can be paral-

lelized and scaled to very large graphs;
• Evaluating the predicted throughput of PARALLELNOSY sched-

ules on full Twitter and Flickr graphs;
• Measuring actual throughput on a social networking system

prototype;
• Comparing CHITCHAT and PARALLELNOSY on samples of

the Twitter and Flickr graphs to explore possible further gains.

3For an example, see: http://gigaom.com/2011/04/07/facebook-
this-is-what-webscale-looks-like/

410

Update'from'Art'

Query'from'Billie'

Data$store$
clients$

Art$

Charlie$

Billie$

Social$graph$ Data$stores$
(user$views)$

Art$

Charlie$

Billie$

(a)$ (b)$

Figure 2: Example of social piggybacking. Pushes are thick red
arrows, pulls double green ones. (a) The edge from Art to Bil-
lie can be served through Charlie if Art pushes to Charlie and
Billie pulls from Charlie. (b) Charlie’s view is a hub. Existing
approaches unnecessarily issue one of the dashed requests.

Roadmap. In Section 2 we discuss our model and present a formal
statement of the problem we consider. In Section 3 we present our
algorithms, which we evaluate in Section 4. We discuss the related
work in Section 5, and Section 6 concludes the work.

2. SOCIAL DISSEMINATION PROBLEM
We formalize the social-dissemination problem as a problem of

propagating events on a social graph. The goal is to efficiently
broadcast information from a user to its neighbors. Dissemination
must satisfy bounded staleness, a property modeling the require-
ment that event streams shall show events almost in real time. We
then show that the only request schedules satisfying bounded stal-
eness let each pair of users communicate either using direct push,
or direct pull, or social piggybacking. Finally, we analyze the com-
plexity of the social-dissemination problem and show that our re-
sults extend to more complex system models with active stores.

2.1 System model
We model the social graph as a directed graph G = (V,E). The

presence of an edge u → v in the social graph indicates that the
user v subscribes to the events produced by u. We will call u a
producer and v a consumer. Symmetric social relationships can be
modeled with two directed edges u→ v and v → u.

A user can issue two types of requests: sharing an event, such as
a text message or a picture, and requesting an updated event stream,
a real-time list of recent events shared by the producers of the user.

For the purpose of our analysis, we do not distinguish between
nodes in the graph, the corresponding users, and their materialized
views. There is one view per user. A user view contains events
from the user itself and from the other users it subscribed to; send-
ing events to uninterested users results in unnecessary additional
throughput cost, which is the metric we want to minimize.

Definition 1 (View) A view is a set of events such that if an event
produced by user u is in the view of user v, then u = v or u →
v ∈ E.

Event streams and views consist of a finite list of events, filtered
according to application-specific relevance criteria. Different filter-
ing criteria can be easily adapted in our framework; however, for
generality purposes, we do not explicitly consider filtering criteria
but instead assume that all necessary past events are stored in views
and returned by queries.

A fundamental requirement for any feasible solution is that event
streams have bounded staleness: each event stream assembled for a

user u must contain every recent event shared by any producers of
u; the only events that are allowed to be missing are those shared
at most Θ time units ago. The specific value of the parameter Θ
may depend on various system parameters, such as the speed of
networks, CPUs, and external-memories, but it may also be a func-
tion of the current load of the system. The underlying motivation
of bounded staleness is that typical social applications must present
near real-time event streams, but small delays may be acceptable.

Definition 2 (Bounded staleness) There exists finite time bound Θ
such that, for each edge u → v ∈ E, any query action of v issued
at any time t in any execution returns every event posted by u in the
same execution at time t−Θ or before.

Note that the staleness of event streams is different from request
latency: a system might assemble event streams very quickly, but
they might contain very old events. Our work addresses the prob-
lem of request latency indirectly: improving throughput makes it
more likely to serve event streams with low latency.

In the system of Figure 2, the request schedule determines which
edges of the social graph are included in the push and pull sets of
any user. In our formal model, we consider two global pusH and
pulL sets, called H and L respectively, both subsets of the set of
edges E of the social graph. If a node u pushes events to a node
v in the model, this corresponds, in an actual system like the one
shown in Figure 2, to data-store clients updating the view of the
user v with all new events shared by user u whenever u shares them.
Similarly, if a node v pulls events from a node u, this corresponds
to data-store clients sending a query request to the view of the user
u whenever v requests its event stream. For simplicity, we assume
that users always access their own view with updates and queries.

Definition 3 (Request schedule) A request schedule is a pair
(H,L) of sets, with a push set H ⊆ E and a pull set L ⊆ E.
If v is in the push set of u, we say that u → v ∈ H . If u is in the
pull set of v, we say that u→ v ∈ L.

It is important to note that all existing push-all, pull-all, and hy-
brid schedules described in Section 1 are sub-classes of the request
schedule class defined above.

The goal of social dissemination is to obtain a request schedule
that minimizes the throughput cost induced by a workload on a
social networking system. We characterize the throughput cost of a
workload as the overall rate of query and updates it induces on data-
store servers. The workload is characterized by the production rate
rp(u) and the consumption rate rc(u) of each user u. These rates
indicate the average frequency with which users share new events
and request event streams, respectively. Given an edge u→ v, the
cost incurred if u → v ∈ H is rp(u), because every time u shares
a new event, an update is sent to the view of v; similarly, the cost
incurred if u→ v ∈ L is rc(v), because every event stream request
from v generates a query to the view of u.

The cost of the request schedule (H,L) is thus:

c(H,L) =
∑

u→v∈H

rp(u) +
∑

u→v∈L

rc(v).

This expression does not explicitly consider differences in the
cost of push and pull operations, modeling situations where the
messages generated by updates and queries are very small and have
similar cost. In order to model scenarios where the cost of a pull
operation is k times the cost of a push, independent of the specific
throughput metric we want to minimize (e.g., number of messages,
number of bytes transferred), it is sufficient to multiply all con-
sumption rates by a factor k. Similarly, multiplying all production

411

rates by a factor k models systems where a push is more expensive
than a pull. Note that the cost of updating and querying a user’s own
view is not represented in the cost metric because it is implicit.

2.2 Problem definition
We now define the problem that we address in this paper.

Problem 1 (DISSEMINATION) Given a graph G = (V,E), and a
workload with production and consumption rates rp(u) and rc(u)
for each node u ∈ V , find a request schedule (H,L) that guaran-
tees bounded staleness, while minimizing the cost c(H,L).

In this paper, we propose solving the DISSEMINATION problem
using social piggybacking, that is, making two nodes communicate
through a third common contact, called hub. Social piggybacking
is formally defined as follows.

Definition 4 (Piggybacking) An edge u→ v of a graph G(V,E)
is covered by piggybacking through a hub w ∈ V if there exists a
node w such that u → w ∈ E, w → v ∈ E, u → w ∈ H , and
w → v ∈ L.

Let ∆ be the upper bound on the time it takes for a system to
serve a user request. Piggybacking guarantees bounded staleness
with Θ = 2∆. In fact, it turns out that admissible schedules trans-
mit events over a social graph edge u → v only by pushing to v,
pulling from u, or using social piggybacking over a hub.

Theorem 1 Let (H,L) be a request schedule that guarantees
bounded staleness on a social graph G = (V,E). Then for each
edge u → v ∈ E, it holds that either (i) u → v ∈ H , or (ii)
u → v ∈ L, or (iii) u → v is covered by piggybacking through a
hub w ∈ V .

PROOF. As we already discussed, all three operations satisfy the
guarantee of bounded-time delivery. We will now argue that they
are the only three such operations.

Assume that the edge u → v is not served directly, but via a
path p = u → w1 → . . . → wk → v. If the length of the
path p is 2, i.e., if k = 1, then simple enumeration of all cases for
paths of length 2 shows that social piggybacking is the only case
that satisfies bounded staleness in each execution. For example,
assume that both the edges u → w1 and w1 → v are push edges.
Then, delivery of an event requires that user w1 will take some
action within a certain time bound. However, since the user w1

may remain idle for an arbitrarily long time, we cannot guarantee
bounded staleness.

For longer paths a similar argument holds. In particular, for paths
such that k > 1, the information has to propagate along some
edge wi → wi+1. The information cannot propagate along the
edge wi → wi+1 without one of the users wi or wi+1 taking an ac-
tion, and clearly we can assume that there exist executions in which
both wi or wi+1 remain idle after u has posted an event and before
the next query of v.

Even considering only the solution space restricted by Theo-
rem 1, Problem 1 is NP-hard. The proof, which uses a reduction
from the SETCOVER problem, is omitted due to lack of space.

Theorem 2 The DISSEMINATION problem is NP-hard.

So far we have considered systems where data-store servers react
only to client operations. We can call data stores that only react to

user request passive stores. Some data-store middleware enables
data-store servers to propagate information among each other too.
We generalize our result by considering a more general class of
systems called active stores, where request schedules do not only
include push and pull sets, but also propagation sets that are defined
as follows:

Definition 5 (Propagation sets) Each edge w → u is associated
with a propagation set Pu(w) ⊆ V , which contains users who are
common subscribers of u and w. If the view of u stores for the first
time an event e produced by w, the data-store server pushes e to
the view of every user v ∈ Pu(w).

We restrict the propagation of events to their subscribers to guar-
antee that a view only contains event from friends of the corre-
sponding user. We only consider active policies where data stores
take actions synchronously, when they receive requests. Some data
stores can push events asynchronously and periodically: all up-
dates received over the same period are accumulated and consid-
ered as a single update. Such schedules can be modeled as syn-
chronous schedules having an upper bound on the production rates,
determined based on the accumulation period and the communica-
tion latency between servers. Longer accumulation periods reduce
throughput cost but also increase staleness, which can be problem-
atic for highly interactive social networking applications.

The only difference between active and passive schedules is that
the formers can determine chains of pushes u→ w1 → . . .→ wk.
However, a chain of this form can be simulated in passive stores
by adding each edge u → wi to H , resulting in lower or equal
latency and equal cost. This is formally shown by the following
equivalence result. The proof is omitted for lack of space.

Theorem 3 Any schedule of an active-propagation policy can be
simulated by a schedule of a passive-propagation policy with no
greater cost.

This result implies that we do not need to consider active propa-
gation in our analysis.

3. ALGORITHMS
This section introduces two algorithms to solve the DISSEMINA-

TION problem. We have shown that the problem is NP-hard, so
we propose an approximation algorithm, called CHITCHAT, and a
more scalable parallel heuristic, called PARALLELNOSY.

3.1 The CHITCHAT approximation algorithm
In this section we describe our approximation algorithm for the

DISSEMINATION problem, which we name CHITCHAT. Not sur-
prisingly, since the DISSEMINATION problem asks to find a sched-
ule that covers all the edges in the network, our algorithm is based
on the solution used for the SETCOVER problem.

For completeness we recall the SETCOVER problem: We are
given a ground set T and a collection C = {A1, . . . , Am} of sub-
sets of T , called candidates, such that

⋃
i Ai = T . Each set A

in C is associated with a cost c(A). The goal is to select a sub-
collection S ⊆ C that covers all the elements in the ground set,
i.e.,

⋃
A∈S A = T , and the total cost

∑
A∈S c(A) of the sets in the

collection S is minimized.
For the SETCOVER problem, the following simple greedy algo-

rithm is folklore [5]: Initialize S = ∅ to keep the iteratively grow-
ing solution, and Z = T to keep the uncovered elements of T .
Then as long as Z is not empty, select the set A ∈ C that mini-
mizes the cost per uncovered element c(A)

|A∩Z| , add the set A to the

412

X
Y

w

Figure 3: A hub-graph used in the mapping of DISSEMINATION
to SETCOVER problem. Solid edges must be served with a push
(if they point to w) or a pull (if they point from w). Dashed
edges are covered indirectly.

solution (S ← S ∪ {A}) and update the set of uncovered ele-
ments (Z ← Z \A). It can be shown [5] that this greedy algorithm
achieves a solution with approximation guaranteeO(log ∆), where
∆ = max{|A|} is the size of the largest set in the collection C. At
the same time, this logarithmic guarantee is essentially the best one
can hope for, since Feige showed that the problem is not approx-
imable within (1 − o(1)) lnn, unless NP has quasi-polynomial
time algorithms [7].

The goal of our SETCOVER variant is to identify request sched-
ules that optimize the DISSEMINATION problem. The ground set
to be covered consists of all edges in the social graph. The solution
space we identified in Section 2 indicates that the collection C con-
tains two kinds of subsets: edges that are served directly, and edges
that are served through a hub. Serving an edge u→ v ∈ E directly
through a push or a pull corresponds to covering using a singleton
subset {u → v} ∈ C. The algorithm chooses between push and
pull according to the hybrid strategy of Silberstein et al. [11]. A
hub like the one of Figure 2(a) is a subset that covers three edges
using a push and a pull; the third edge is served indirectly. Every
time the algorithm selects a candidate from C, it adds the required
push and pull edges to the solution, the request schedule (H,L).

A straightforward application of the greedy algorithm described
above has exponential time complexity. The iterative step of the al-
gorithm must select a candidate from C, which has exponential car-
dinality because it contains all possible hubs. To our rescue comes a
well-known property about applying the greedy algorithm for solv-
ing the SETCOVER problem: a sufficient condition for applying the
greedy algorithm on SETCOVER is to have a polynomial-time or-
acle for selecting the set with the minimum cost-per-element. The
oracle can be invoked at every iterative step in order to find an (ap-
proximate) solution of the SETCOVER problem without materializ-
ing all elements of C. This makes the cardinality of C irrelevant.

The algorithmic challenge of CHITCHAT is finding a polynomial
time oracle for the DISSEMINATION problem. One key idea of
CHITCHAT is to split the oracle problem in two sub-problems, both
to be solved in polynomial time.

The first sub-problem is adding to C, for each node w, the hub-
graph centered on w that covers the largest number of edges for the
lowest cost. A hub-graph centered on w is a generalization of the
sub-graph of Figure 2(a), as depicted in Figure 3. It is a sub-graph
of the social graph where X is a set of nodes that w subscribes, and
Y is a set of nodes that subscribe to w. We refer to such hub-graphs
using the notation G(X,w, Y).

The second sub-problem is selecting the best candidate of C.
This is now simple since C contains a linear number of hub-graph
elements and a quadratic number of singleton edges. If a hub-graph
is selected, the edges from all nodes in X to w are set to be push,
and the edges from w to all nodes in Y are set to be pull. All edges
between nodes of X and Y are covered indirectly.

The first sub-problem, finding the hub-graph centered in a given
node that covers most edges with lowest cost, is an interesting op-
timization problem in itself. In order to define the sub-problem,
we associate to each node u of a hub-graph a weight g(u) reflect-
ing the cost of u. We set g(x) = rp(x) for all x ∈ X , that is,
the cost of a push operation from x to w is associated to node x.
Similarly we associate the weight g(y) = rc(y) for each y ∈ Y .
For the hub node w, we set g(w) = 0. Let W and E(W) be
the set of nodes and edges of the hub-graph, respectively, and let
g(W) =

∑
u∈W g(u). The cost-per-element of the hub-graph is:

p(W) =
g(W)

|E(W)| . (1)

The sub-problem can thus be formulated as finding, for each node
w of the social graph, the hub-graph (W,E(W)) centered on w
that minimizes p(W).

Careful inspection of Equation (1) motivates us to consider the
following problem.

Problem 2 (DENSESTSUBGRAPH) Let G = (V,E) be a graph.
For a set S ⊆ V , E(S) denotes the set of edges of G between
nodes of S. The DENSESTSUBGRAPH problem asks to find the
subset S that maximizes the density function d(S) = |E(S)|

|S| .

If we weight the nodes of S using the g function define above,
we can obtain a weighted variant of this problem by replacing the
density function d(S) with dw(S) = |E(S)|/g(S).

Let Gw be the largest hub-graph centered in a node w, the one
where X and Y include all producers and consumers of w, respec-
tively. Any subgraph (S,E(S)) of Gw that maximizes dw(S) min-
imizes p(S). Therefore, any solution of the weighted version of
DENSESTSUBGRAPH will give us the hub-graph centered on w to
be included in C.

Interestingly, although many variants of dense-subgraph prob-
lems are NP-hard, Problem 2 can be solved exactly in polynomial
time. Given that we are looking for a solution of the SETCOVER
problem with a logarithmic approximation factor, we set for the
simple greedy algorithm analyzed by Asahiro et al. [1] and later
by Charikar [3]. This algorithm gives a 2-factor approximation for
Problem 2, and its running time is linear in the number of edges
in the graph. The algorithm is the following. Start with the whole
graph. Until left with an empty graph, iteratively remove the node
with the lowest degree (breaking ties arbitrarily) and all its incident
edges. Among all subgraphs considered during the execution of the
algorithm return the one with the maximum density.

The above algorithm works for the case that the density of a sub-
graph is d(S). In our case we want to maximize the weighted-
density function dw(S). Thus we modify the greedy algorithm of
Asahiro et al. and Charikar as follows. In each iteration, instead of
deleting the node with the lowest degree, we delete the node that
minimizes a notion of weighted degree, defined as dg(u) = d(u)

g(u)
,

where d(u) is the normal notion of degree of node u. We can show
that this modified algorithm yields a factor-2 approximation for the
weighted version of the DENSESTSUBGRAPH problem.

Lemma 1 Given a graph Gw = (S,E(S)), there exists a linear-
time algorithm solving the weighted variant of the DENSESTSUB-
GRAPH problem within an approximation factor of 2.

PROOF. We prove the lemma by modifying the analysis of Cha-
rikar [3]. Let f(S) = E(S)

g(S)
be the objective function to optimize,

413

over a subset S of the original set of nodes V . We first produce an
upper bound on the optimal solution. Consider any assignment of
each edge e = (u, v) in the graph to either node u or node v. Let
din(u) be the number of edges assigned to node u, and let D =

maxu{ din(u)g(u)
}; recall that g(u) is the node weighting function.

Consider the optimal solution S∗. Each edge in E(S∗) must be
assigned to a node in S∗. Thus, we have

|E(S∗)| =
∑
u∈S∗

din(u) ≤
∑
u∈S∗

Dg(u) = Dg(S),

from which it follows that

max
S⊆V
{f(S)} ≤ D. (2)

Now consider the specific assignment constructed during the ex-
ecution of the greedy algorithm. Initially all edges are unassigned.
When a node u with minimum weighted degree d(u)

g(u)
is deleted

from S, all edges currently in S and incident to u are assigned to u.
We maintain the assignment that all edges between nodes currently
in S are unassigned, while all other edges are assigned.

Let D be defined as before, for this specific assignment con-
structed during the execution of the algorithm. Also let fG be the
maximum value of f(S) for all sets S obtained during the exe-
cution of the algorithm. Consider a single iteration of the greedy
algorithm, let S be the set of nodes currently alive, and let umin be
the node deleted at that iteration. Since umin is selected for deletion
it should hold

dS(umin)

g(umin)
≤ dS(v)

g(v)
,

for all nodes v ∈ S, and where dS is the degree of a node in the
subgraph defined by S. From the previous inequality it follows that

dS(umin)

g(umin)
≤

∑
v∈S dS(v)∑
v∈S g(v)

= 2
|E(S)|
g(S)

≤ 2 f(S) ≤ 2 fG.

Since edges are assigned to umin only when umin is deleted, we
have dS(umin) = din(umin), and considering the specific node
u∗min for which the maximum D is materialized, we have

D =
din(u∗min)

g(u∗min)
=

dS(u∗min)

g(u∗min)
≤ 2 fG. (3)

Combining Equations (2) and (3) proves that our modified greedy
algorithm is a factor-2 approximation to the weighted version of the
DENSESTSUBGRAPH problem.

Subsequent greedy steps. The discussion so far has shown how
to perform the first greedy step of the SETCOVER algorithm. Our
algorithm, shown as Algorithm 1, iteratively applies the steps un-
til all edges of E are covered. The output of the oracle for the
DENSESTSUBGRAPH problem needs to consider the choices done
in previous steps. This is why the DensestSubgraph function
takes the sets H , L and Z as inputs, and uses them as follows.

The sets H and L are used to update the weights g(v). If some
previous step has added an edge (x → w) to the set H , then the
cost of pushing over that edge has already been paid, and we update
g(x) = 0 for all hub-graphs G(w) for which x ∈ X(w). Similarly,
if an edge (w → y) is already in the set L, then we update g(y) = 0
for all hub-graphs G(w) for which y ∈ Y (w).

The set of edges covered by a hub-graph only includes elements
of Z that have not been already covered. Therefore, the density
function of the DENSESTSUBGRAPH oracle is defined as d(S) =
|E(S) ∩ Z|/g(S).

Algorithm 1 CHITCHAT

Input: Directed graph G = (V,E);
Output: Dissemination schedule (H,L);
1: Z ← E; {Uncovered edges}
2: Q ← ∅; {A priority queue}
3: H ← ∅; {Push edges}
4: L← ∅; {Pull edges}
{Determine the first DENSESTSUBGRAPH oracle output}

5: for all w ∈ V do
6: Form maximal hub-graph G(w);

{Find densest subgraph S in G(w) with density d(S)}
7: (S, d(S)) = DensestSubgraph(G(w), H, L, Z);

{Insert subgraph S in priority queue with cost 1
d(S)
}

8: Insert(Q, S, 1
d(S)

);
{Greedy steps for SETCOVER}

9: while (|Z| > 0) do
10: S ← ExtractMin(Q); {Extract min-cost subgraph}
11: Z ← Z \ E(S); {Edges E(S) covered}

{Add S to the solution}
12: H ← H ∪ {{S.X} → w};
13: L← L ∪ {w → {S.Y }};

{Update the DENSESTSUBGRAPH oracle output}
14: for all G(w) that contain edges of E(S) do
15: Let S∗ be the current densest subgraph of G(w);
16: Remove(Q, S∗);
17: (S, d(S)) = DensestSubgraph(G(w), H, L, Z);
18: Insert(Q, S, 1

d(S)
);

19: return (H,L)

Approximation guarantee. The solution of our algorithm has
a logarithmic-factor approximation due to the greedy algorithm
for SETCOVER. If we use an oracle for the DENSESTSUBGRAPH
problem that provides the exact solution, no additional loss in qual-
ity incurs. Lemma 1 shows that if we use the greedy algorithm
analyzed by Charikar [3] as an oracle for the DENSESTSUBGRAPH
problem, the combined approximation factor isO(2·lnn) = O(lnn).
This leads to the following result.

Theorem 4 The DISSEMINATION problem can be solved with an
O(lnn)-factor approximation guarantee, using the mapping to SET-
COVER problem, and applying the greedy algorithm with an oracle
to the DENSESTSUBGRAPH problem.

3.2 The PARALLELNOSY heuristic
We now introduce a greedy heuristic to solve the DISSEMINA-

TION problem, which we call PARALLELNOSY. PARALLELNOSY
improves the scalability of CHITCHAT by introducing two key sim-
plifications. First, it only considers predefined hub-graph struc-
tures, thus eliminating the expensive step of finding the densest
subgraph among all hub-graphs centered in a given hub node. Sec-
ond, it can be run as a parallel algorithm, which takes multiple
parallel optimization choices instead of selecting the globally best
choice at each iteration; the algorithm uses locking to prevent mak-
ing conflicting choices. Like CHITCHAT, PARALLELNOSY is de-
signed to optimize a static social graph. Incremental updates can
be handled as described in Section 3.3.

Overview. PARALLELNOSY proceeds in iterations; an overview
of an iteration is shown in Algorithm 2. Eventually, the cost con-
verges to some local minimum, so executing further iterations does
not improve the cost any longer and the algorithm terminates. The
algorithm uses three sets, initially empty: the push edges H , the
pull edges L, and the edges C covered by some hub.

Every iteration proceeds in three phases: candidate selection,
edge locking, and scheduling decision.

414

Algorithm 2 PARALLELNOSY: overview of one iteration
Input: Directed graph G = (V,E);
Input: Current dissemination schedule (H,L);
Input: Set C of edges covered through some hub;
Output: Updated dissemination schedule (H,L);
Output: Updated set C of edges covered through some hub;
{ Phase 1: Candidate selection, parallel for each edge w → y}

1: for all w → y ∈ E s.t. w → y 6∈ C do
2: X ← {x | (x→ w) ∈ E \C ∧ (x→ y) ∈ (E \ (C ∪H ∪L))};
3: if s(X,w, y)− c(X,w, y) > 0 then
4: G(X,w, y) is a candidate hub-graph;
5: for all u→ v ∈ G(X,w, y) do
6: lock u→ v with priority s(X,w, y)− c(X,w, y);
{ Phase 2: Edge locking, parallel for each edge u→ v}

7: for all u→ v ∈ E do
8: collect all lock requests for u→ v;
9: grant edge lock to the hub-graph with highest priority;
{ Phase 3: Scheduling decision, parallel for each hub-graph }

10: for all hub-graphs G(X,w, y) do
11: if G(X,w, y) is candidate and has all locks granted then
12: add w → y into L;
13: for all x ∈ X do
14: add x→ w into H;
15: add x→ y into C;
16: else
17: X′ ← subset of x′ ∈ X s.t. G(X,w, y) was granted locks for

x′ → y and x′ → w ;
18: if s(X′, w, y)− c(X′, w, y) > 0 then
19: add w → y into L;
20: for all x′ ∈ X′ do
21: add x′ → w into H;
22: add x′ → y into C;
23: merge all updates to H , L and C
24: return (H,L,C);

The candidate selection phase chooses hub-graphs based on the
observation that, in social networking systems, production rates are
often smaller than consumption rates, so pull edges are more ex-
pensive than push edges. In terms of the hub-graph of Figure 3,
candidate selection looks for hub-graphs where the set Y consists
of a single node y, covering many x → y edges with multiple
(cheap) x → w push edges and only one (expensive) w → y pull
edge. One such hub-graph is considered a candidate only if select-
ing it reduces cost compared to the hybrid schedule of Silberstein
et al. [11]. The algorithm can stop if no such candidates are found.

Candidate selection generates candidate hub-graphs in parallel;
therefore, some candidates may require to modify the schedule of
shared edges in an inconsistent, wasteful manner. The edge locking
phase prevents such conflicts: if multiple hub-graphs try to modify
the schedule of an edge, the one leading to the highest cost reduc-
tion obtains the lock to change it.

In the scheduling decision phase, each hub-graph changes the
schedule of the edges it got a lock for. Given the structure of social
graphs, only few candidate hub-graphs achieve to acquire locks for
all their edges. An edge, in fact, could be shared by a very large
number of hub-graphs. In order to perform more optimizations at
each iteration, a candidate hub-graph that gets locks only for a sub-
set of its edges reevaluates if it can achieve gains using only its
locked edges. This suffices to prevent conflicts while achieving
faster convergence.

We now discuss the three phases in detail.

Phase 1: Candidate selection. The first phase examines available
hub-graphs and evaluates the cost reduction they can give, com-
pared to the current solution. For each edge w → y, candidate

selection builds a hub-graph similar to the one of Figure 3 where
Y = {y}. Each hub-graph is built and evaluated independently
of each other. Therefore, candidate selection can be executed in
parallel by multiple processes, each responsible for one hub-graph.

For each hub-graph G(X,w, y), the set X is built by selecting
common predecessors of w and y, with two conditions. The first
condition is that the edge x → w is not covered already through a
hub; since the hub requires pushing over this edge, we do not want
to “undo” optimizations done in previous iterations that covered the
edge x→ w through some other hub. The second condition is that
the cross-edge x→ y is not covered already through some hub, and
that it has not been scheduled to be a push or pull; in these cases,
in fact, covering the edge x→ y through w would be useless. The
two conditions can be formally expressed by adding nodes x in X
such that x → w 6∈ C and x → y 6∈ (C ∪ H ∪ L). For similar
reasons, we require that w → y 6∈ C.

Candidate hub-graphs must cover new edges with a lower cost
than the hybrid schedule of Silberstein et al. [11], which covers
each edge x → y with a cost c∗(x → y) = min{rp(x), rc(y)}.
Selecting a hub-graph G(X,w, y) saves the cost of covering cross-
edges between nodes in X and y, resulting in saved cost

s(X,w, y) =
∑

x∈X,(x→y)∈E

c∗(x→ y).

The positive cost of a hub-graph G(X,w, y) is computed by con-
sidering the edges that need to be scheduled as push or pull edges,
respectively. The positive cost on an edge e = x→ w is

cX(e) =

 rp(x) if e ∈ L \H
rp(x)− c∗(e) if e 6∈ (H ∪ L)
0 if e ∈ H

In the first case, if the edge e is in L \H , PARALLELNOSY has
previously decided that the edge is served by a pull, but not by a
push. Selecting G mandates that the edge must be served by a push
too, hence incurring an additional cost of rp(x). In the second case,
if the edge e is not in H ∪ L, PARALLELNOSY has not scheduled
the edge yet. The additional cost of pushing over e depends on
rp(x) and the cost c∗(e) of covering e with the hybrid schedule.
Finally, if e is already served by a push, there is no additional cost.
The cost c(w → y) of the edge w → y is specular.

The overall positive cost of the hub-graph is thus

c(X,w, y) =
∑
x∈X

cX(x→ w) + c(w → y).

The PARALLELNOSY heuristic considers a hub-graph G(X,w, y)
as a candidate if its saved cost is higher than its positive cost.

Phase 2: Edge locking. Before selecting candidate hub-graphs for
scheduling, PARALLELNOSY needs to make sure that the specu-
lative cost reductions calculated during candidate selection are in-
deed correct. In fact, candidate selection of each hub-graph as-
sumes that no other hub-graph will be selected in parallel. PARAL-
LELNOSY uses locking to select hub-graphs in parallel while pre-
serving the correctness of independent cost estimations.

In the edge locking phase, each candidate hub-graph tries to lock
its edges. Edge locks are assigned in parallel: there is one separate
process responsible for evaluating lock requests for each edge u→
v in the graph. The edge locking process responsible for u → v
receives the gain value s(X,w, y)− c(X,w, y) for each candidate
hub-graph that includes u → v. The process assigns the lock only
to the hub-graph with highest gain.

Phase 3: Scheduling decision. During the last phase of PARAL-
LELNOSY, one process is responsible for handling each candidate

415

hub-graph G(X,w, y). For each edge u → v in G(X,w, y), the
process receives information on whether G(X,w, y) has success-
fully locked u → v. If G(X,w, y) receives locks for all its edges,
the process selects the hub-graph for the schedule, that is, it adds
all edges x→ w with x ∈ X into H , all edges x→ y with x ∈ X
into C, and the edge w → y into L. Locking ensures that there are
no conflicts while modifying the sets H , L and C in parallel: each
edge will be added to only one of these sets by only one process.
The final value of H , L and C at the end of the iteration is the union
of all sets determined during the scheduling decision phase.

If a candidate hub-graph G(X,w, y) only receives locks for a
strict subset of edges, the process builds a hub-graph G′(X ′, w, y)
using only the locks it got. The set X ′ ⊂ X includes only the nodes
x′ such that both edges x′ → w and x′ → y were successfully
locked. The process applies the scheduling changes induced by
G′(X ′, w, y) if s(X ′, w, y) − c(X ′, w, y) > 0, where the costs
are determined as in the candidate selection phase. Locking still
guarantees the absence of conflicts.
Implementing PARALLELNOSY with MapReduce. The PARAL-
LELNOSY algorithm is designed to be parallel, so it can be easily
implemented using MapReduce [6]. This implementation is the
one we used to evaluate the approach. We now describe in more
detail the issues pertaining to the MapReduce implementation; we
assume that the reader is familiar with the MapReduce architecture.

Prior to the first iteration of PARALLELNOSY the implementa-
tion executes a preliminary job that builds a hub-graph G(X,w, y)
for each edge w → y. In particular, each hub-graph detects the
cross-edges that it could potentially cover. Cross-edges detection
is expensive since it is requires fetching edges at distance two from
the hub node w. In very large social graphs, workers responsible
for high-degree hub nodes may consume a large amount of memory
to detect cross-edges, potentially leading to job failures. We over-
come this problem by fixing an upper bound b on the number of
detected cross-edges. A worker responsible for a large hub-graph
starts by loading in memory the first b edges it received. If some
loaded edge is not found to be part of the hub-graph, it is replaced
with the next edge that has not been yet loaded.

Phase 1 is executed by the map phase of MapReduce, where each
mapper takes a hub-graph G(X,w, y) as input. If the hub-graph is
a candidate then the mapper requests to lock all edges of the graph
by outputting a key-value pair for each edge u→ v in G(X,w, y).
The key is the id of the edge u→ v; the value contains the id of the
edge w → y, which uniquely denotes the hub-graph G(X,w, y),
together with its gain s(X,w, y)− c(X,w, y) > 0.

Phase 2 is executed by the reduce phase of MapReduce, where
each reducer receives all lock requests for a given edge u → v.
The reducer assigns the lock to the hub-graph with highest gain.
The output is a key-value pair where the key is the id of the edge
w → y of the hub-graph that got the lock and the value is the id of
the locked edge u→ v.

Phase 3 is implemented as a reduce-only job, in which each hub-
graph receives the list of edge locks it was granted, and outputs a
list of edge updates that represent its scheduling decisions.

After Phase 3, an additional MapReduce job merges all schedul-
ing decisions and disseminates these change to the inputs of the
next iteration. Every update to an edge u → v needs to be sent
not only to the hub-graphs centered in u and v, but also to the hub-
graphs centered in neighbors of u and v, since these could have
u→ v as a cross-edge.

Using a push approach for the final update dissemination is sim-
pler but results in a flood of information that makes the execution
of one iteration much slower. Therefore, our implementation uses a
pull approach and two MapReduce jobs: in the first job, hub-graphs

having u → v as cross-edge send a notification to the hub-graphs
centered in u and v saying that they are interested in updates to
u → v. Updates for the edge are propagated only if they are in-
deed available. This reduces the load on the network and signifi-
cantly speeds up the execution time of an iteration.

3.3 Incremental updates
PARALLELNOSY and CHITCHAT optimize a static social graph.

Incremental updates to the graph can be trivially implemented as
follows: if an edge is added, it is served directly, choosing the
cheaper between a push and a pull policy. If a pull edge u → v
is removed, where u is a hub, then all edges pointing to v that are
covered via u are served directly. The case where v is a hub and the
edge is served by a push is similar. Over time, graph updates let the
quality of the dissemination schedule degrade, so our algorithms
can be executed periodically to re-optimize cost. The experimental
evaluation of Section 4 indicates that our algorithm does not need
to be re-executed frequently.

4. EVALUATION
In this section, we evaluate the throughput performance of the

proposed algorithm, contrasting it against the best available schedul-
ing algorithm, the hybrid policy of Silberstein et al. [11].

Our evaluation is both analytical, considering our cost metric
of Section 2.1, and experimental, using measurements on a so-
cial networking system prototype. We show that the PARALLEL-
NOSY heuristic scales to real-world social graphs and doubles the
throughput of social networking systems compared to hybrid sched-
ules. On a real prototype, PARALLELNOSY provides similar through-
put as hybrid schedules when the system is composed by few servers;
as the system grows, the throughput improvement becomes more
evident, approaching the 2-factor analytical improvement.

We also evaluate the relative performance of the two proposed
algorithms PARALLELNOSY and CHITCHAT. This comparison is
relevant because PARALLELNOSY is more scalable while CHIT-
CHAT is theoretically superior.

4.1 Input data
We obtain datasets from two social graphs: flickr, as of April

2008, and twitter, as of August 2009. The twitter graph
has been made available by Cha et al. [2]. flickr has 2 409 730
nodes and 71 345 981 edges; twitter has 82 949 778 nodes and
1 423 194 279 edges.

Our algorithms also require input workloads: production and
consumption rates for all the nodes in the network. As we do not
have access to real workloads for neither of the two datasets, we
synthetically generate workloads using observations from the lit-
erature. It has been observed by Huberman et al. that nodes with
many followers tend to have a higher production rate, and nodes
following many other nodes tend to have a higher consumption
rate [8]. To model this behavior, we set the production and con-
sumption rates of the nodes to be proportional to the logarithm of
their in- and out-degrees, respectively. We consider a reference ra-
tio of average production rate vs. average consumption rate equal
to 5, as observed by Silberstein et al. [11].

4.2 Social piggybacking on large social graphs
We run our MapReduce implementation of the PARALLELNOSY

heuristic on the full twitter and flickr graphs. We use 1500
cores of a shared Hadoop cluster. Executing the first iteration on
the larger twitter graph takes about 1 hour; the execution time
for subsequent iterations decreases to about 45 minutes from the
fourth iteration on, as fewer optimization opportunities are left.

416

As discussed in Section 3.2, very large social graphs may con-
tain millions of cross-edges for a single hub-graph. This is the case
of the twitter dataset, so we execute the cross-edges detection
phase at every cycle of PARALLELNOSY, with an upper bound of
100,000 cross-edges per hub-graph. We execute cross-edges detec-
tion only once for flickr, as the graph is significantly smaller.

For the twitter graph, the amount of memory used by individ-
ual MapReduce workers exceeds in some cases the RAM capacity
allocated to these workers, which is 1GB. Such cases occur because
the graph is so densely connected that building full hub-graphs is
sometimes unfeasible. We solve this problem with a simple ap-
proach: given a hub-graph for an edge w → y, if the two-hop
neighborhood of the hub w is too large, we remove some nodes
from the predecessor set of w, and in particular the predecessors
that have no cross edges to y and that will never be included in a
hub-graph G(X,w, y). With this conservative modification we still
cover all edges of the original graph; we only make the computation
feasible at the cost of missing some optimization opportunities.
Predicted throughput. We quantify the performance of our algo-
rithms by measuring their throughput compared against a baseline.
Consider the request schedule (H,L) produced by an algorithm A
for a given input, and assume that it achieves cost cA (see Sec-
tion 2.1) for that input. We define the predicted throughput tA of
algorithm A to be the inverse of the cost, i.e., tA = c−1

A . We use the
term predicted to emphasize that this throughput estimate is based
on our cost function, as contrasted to the actual throughput reported
in the next section, which is based on measurements obtained with
our prototype implementation.

We use as baseline the hybrid schedule of Silberstein et al. [11],
which is the best available algorithm. We refer to this baseline as
FEEDINGFRENZY algorithm, or simply as FF. Hybrid schedules
are per-edge optimizations which can be easily calculated by visit-
ing each edge of the social graph once.

To compare with FF, we define the predicted improvement ratio
of an algorithm A as tA/tFF, where tA is the predicted throughput
of the algorithm A and tFF is the predicted throughput of the base-
line. Algorithm A can be either PARALLELNOSY or CHITCHAT.
A relative throughput greater than 1 indicates that the algorithm A
outperforms the FF baseline.

Figure 4 shows the predicted improvement ratio of PARALLEL-
NOSY for full social graphs over the FF baseline. Running more
iterations of PARALLELNOSY leads to higher throughput improve-
ment. For both social graphs, the throughput of the PARALLEL-
NOSY schedule increases sharply during the first iterations and it
quickly stabilizes. The larger stabilization time for twitter is
due to the incremental detection of cross-edges at every cycle, as
discussed before.

The throughput increase of PARALLELNOSY, a factor of about 2
for both datasets, is substantial. The twitter graph enables higher
throughput performance since it is denser than flickr.
Incremental updates. PARALLELNOSY addresses the problem of
optimizing a static social graph, but we also described a simple ap-
proach for incremental updates. In the experiment illustrated by
Figure 5 we investigate the effect of executing PARALLELNOSY
after a batch of k edges is added to the graph. We start by running
PARALLELNOSY on the half of the edges of flickr, selected at
random. We then add k randomly selected edges and optimize the
graph using two different policies: an incremental policy, which
uses the baseline for the last k edges, and a static policy, which re-
optimizes the graph again using PARALLELNOSY after adding the
last edges. Figure 5 shows that incremental policy is more expen-
sive, but it degrades slowly compared to the static one; we magnify
the y axis to better show the degradation. If the heuristic is applied

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20

P
re

d
ic

te
d
 i
m

p
ro

v
e
m

e
n
t
ra

ti
o

Iteration

flickr ParallelNosy
twitter ParallelNosy

Figure 4: Predicted improvement ratio of PARALLELNOSY.

 1.5

 1.55

 1.6

 1.65

 1.7

 1.75

 1.8

10
4

10
5

10
6

10
7

P
re

d
ic

te
d
 i
m

p
ro

v
e
m

e
n
t
ra

ti
o

Batch size

incremental ParallelNosy
ParallelNosy

Figure 5: Predicted improvement ratio of static and incremen-
tal PARALLELNOSY, starting from half flickr graph and adding
increasingly large batches of new edges.

once every 107 added edges, which is almost one third of the initial
graph, the throughput increase remains stable. Therefore, after ex-
ecuting an initial optimization of the social graph, a large number
of edges can be added before a re-optimization becomes needed.

4.3 Prototype performance
In the previous section we evaluated our algorithms in terms of

the predicted cost function that the algorithms optimize. In order
to obtain a more realistic performance evaluation, we test the pro-
posed algorithms on a real social networking system prototype and
we measure actual throughput. Our results show that PARALLEL-
NOSY increases the throughput of our social networking prototype.
We start by describing our system.

Description of the prototype. The architecture of our prototype
is the one shown in Figure 1. We consider an event-stream in-
dex, where user views contain references to events. In such a sys-
tem, serving event-stream queries entails two steps; the first step is
assembling the event stream, which involves querying user views
over the social graph; the second step is event-stream rendering,
which involves retrieving the text of the event, comments, pictures,
expanding links etc. Our implementation focuses on the first step
of assembling the event-stream, which queries user views over a so-
cial graph. Updates insert events as (user id, event id, timestamp)
tuples into user views; queries return the 10 latest events across all
friends. The tuple size is 24 bytes.

Our prototype uses Java for the application logic and memcached
as data store for the views; we added a thin layer on top of mem-
cached, at the server side, to aggregate and filter out tuples in case
of queries and to trim views when they contain too many events.

The pseudocode of application logic servers is illustrated in Al-
gorithm 3. For simplicity, we do not show the logic for handling

417

Algorithm 3 Pseudocode of application servers
1: upon receive update d from user u do
2: h[u]← get-push-set-from-schedule(u);
3: for all s : ∃ v ∈ h[u] stored by s do
4: send d to data store s;
5: upon receive update ack from server s do
6: if received update acks from all data stores s ∈ h[u] then
7: send ack to the front-end server handling query from u;
8: upon receive query from user u do
9: l[u]← get-pull-set-from-schedule(u);

10: r[u]← ∅;
11: for all s : ∃ view v ∈ l[u] stored by data store s do
12: send query to data store s;
13: upon receive new query reply n from a data store do
14: r[u]← filter(n, r[u]);
15: if received query replies from all data stores s ∈ l[u] then
16: send r[u] to the front-end server handling query from u;

message losses and crashes, and for ensuring that each user has
at most one outstanding request at any given time. Application
logic servers execute the same operations regardless of the adopted
schedule; schedules determine the push-sets h[u] and pull-sets l[u]
used in update and query operations, respectively. Push and pull
sets for all users are kept in memory. The filter operation is generic:
in our example, it keeps the 10 latest events in r[u]. Reply lists r[u]
are kept in memory so the cost of filtering is negligible. We use
batching: when processing a user query, application servers send at
most one query per data store server s, which replies with a list of
events filtered from all views v ∈ l stored by s. Most data store lay-
ers offer a query/update client interface that, given a set of views,
transparently communicates with servers using batching.

All our experiments are run on a large cluster of Intel Xeon
servers with sixteen 2.4 GHz cores, 24 GB of main memory and
a Gigabit network.

The workload for our evaluation consists of a sequence of user
queries and updates received by the application-logic servers, which
act as data-store clients; see Figure 1. In the following, we refer
to application-logic servers as clients, as they are clients for the
data store, and to data-store servers as servers. We consider the
flickr graph, and generate a workload using the same parame-
ters as in the previous section. For simplicity, clients keep the social
graph and the related request schedule in main memory. They trans-
late each query and update into one or more queries and updates to
servers. Servers keep user views in main memory.

Data partitioning. We refer to data partitioning in social network-
ing systems as the mapping from user views, or equivalently nodes
of the social graph, to servers. Due to the use of batching in our
prototype, data partitioning has an impact on actual throughput: for
example, if two neighboring nodes u and v are mapped to the same
server, disseminating events over the edge u → v has zero cost.
Using data partitioning information as input of the DISSEMINA-
TION problem is attractive, but has two main drawbacks. First, this
information might be hidden as internal logic of the data store layer
and might be unavailable. Second, data partitioning is highly dy-
namic and can be modified often during the lifetime of a system,
for example, if servers fail or if new servers are added to the sys-
tem. Including information on data partitioning as an input would
make incremental updates more complex and frequent. Therefore,
our definition of the DISSEMINATION problem does not take data
partitioning information as input. Our evaluation prototype, how-
ever, does use data partitioning and batching, showing that this ad-
ditional information is not essential to achieve significant perfor-
mance gains. The prototype uses a simple partitioning approach

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 1 10 100 1000
 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

A
c
tu

a
l
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

A
c
tu

a
l
im

p
ro

v
e

m
e

n
t

ra
ti
o

Number of servers

ParallelNosy - throughput
FF - throughput

Actual improvement ratio

Figure 6: Actual per-client throughput of our prototype as a
function of the number of servers. The first two lines have y
axis on the left, the third on the right.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

P
re

d
ic

te
d

 t
h

ro
u

g
h

p
u

t
(n

o
rm

a
liz

e
d

)

P
re

d
ic

te
d

 i
m

p
ro

v
e

m
e

n
t

ra
ti
o

Number of servers

ParallelNosy - throughput
FF - throughput

Predicted improvement ratio

Figure 7: Predicted throughput as a function of the number of
servers. The first two lines have y axis on the left, the third on
the right.

that is common in practical data store layers: the view of a user u
is stored in a random server, selected by hashing the id of the user.

Actual throughput. Our evaluation focuses on actual throughput,
expressed as the number of requests completed per second in our
prototype. For the measurements, we consider a request to be com-
pleted when the front-end processing it (see Figure 1) receives a
reply. Since queries involve only simple processing of in-memory
data structures, the latency per request is very low unless the system
becomes saturated.

Since all clients are identical and operate independently from
each other, we evaluate the throughput improvement per-client. We
compare against the throughput obtained by the same prototype
when the hybrid schedule of Silberstein et al. [11] is used to com-
pute the push-sets h[u] and the pull-sets l[u] of Algorithm 3; we
keep referring to this baseline as FF.

Figure 6 reports per-client throughput of our prototype. Clients
have more load per request than servers: given a single request,
clients may send multiple queries to servers, while each server only
has to process at most one query. As we increase the number of
servers in the system, clients are likely to contact more servers and
send more queries per request; this reduces the absolute per-client
throughput. However, a larger number of servers supports a larger
number of clients, resulting in improved actual throughput. We
found that, if the network does not become a bottleneck, the overall
throughput using n clients and n servers is about n times the per-
client throughput with n servers.

PARALLELNOSY is particularly effective and scalable to sys-
tems with billions of requests per second. According to our mea-

418

surements, hundreds of servers are necessary to support this load.
In systems with 200 or more servers, throughput benefits signif-
icantly from the use of PARALLELNOSY. Figure 6 shows that
the throughput improvement is about 20% with 500 servers, and
about 35% with 1000 servers. Random data partitioning sometimes
makes the relative throughput curve irregular, especially when the
system is small, but the trend is clear: the throughput gain of PARAL-
LELNOSY increases when the system size grows.

With a lower number of servers, the two scheduling algorithms
lead to similar cost, with the baseline sometimes performing slightly
better. This is because with fewer nodes, there is a higher likelihood
that, for any given edge u → v, both u and v are mapped to the
same server S. The cost of a push or pull over the edge in this case
is just the cost of sending a request to S, which is needed anyway
every time u updates or v queries. Since serving u → v comes
for free, there is no need to prune it. Our algorithm, however, may
try to prune this edge anyway by making u and v communicate
through some hub node w. If w is mapped to a data store different
than S, the algorithm may schedule an additional or expensive pull
request. With a higher number of servers, however, it becomes less
likely that u and v are mapped to the same server.

Figure 7 reports the predicted throughput of the request sched-
ules. After obtaining the schedules, we calculate their predicted
throughput (see Section 4.2), this time considering the effect of
data placement: if two views are mapped to the same server, a sin-
gle message can query both views at once. We normalize predicted
throughput and divide it by the (optimal) predicted throughput ob-
tained with only one server. The consistency between the experi-
mental throughput results and our predicted cost evaluation is strik-
ing. The ratio between PARALLELNOSY and FF follows a very
similar trend as in our evaluation. FF results in higher throughput
in smaller systems, but PARALLELNOSY outperforms in systems
with more than 200 servers. The actual values of the relative pre-
dicted and actual throughput match very well. Figure 7 considers
even larger systems than Figure 6, with up to 10000 servers.

As the number of servers grows, the predicted throughput of Fig-
ure 7 converges to the results reported in Figure 4, where data
placement is not considered. This is because as the number of
servers increases, the likelihood of having neighboring nodes ran-
domly placed in the same server decreases, and thus, the effect of
data placement becomes negligible.

Beyond per-client throughput, a schedule supporting heavy work-
loads must balance load, which in our case is the query rate per
server. Figure 8 compares the load balancing capabilities of PARAL-
LELNOSY and FF schedules using this load metric. We plot aver-
age values; error bars represent the variance. Note that, since the
y axis is logarithmic, the divergence between the algorithms and
the error bars on the right side of the graph are magnified. As the
number of servers grows, the average load per server decreases for
both algorithms. Figure 8 shows that both algorithms produce well-
balanced schedules, especially in larger systems.

4.4 The potential of social piggybacking
The previous experiments show that PARALLELNOSY is an ef-

fective heuristic for real-world large-scale social networking sys-
tems. However, we do not know how close PARALLELNOSY can
get to an optimal social-piggybacking schedule. Thus, in this sec-
tion we evaluate PARALLELNOSY against the CHITCHAT algo-
rithm, which has provable approximation guarantees. Our objective
is to demonstrate that the potential of social piggybacking to im-
prove further the (already good) performance of PARALLELNOSY.

CHITCHAT is a relatively expensive centralized algorithm that
does not scale to very large social graphs; this constraint restricts

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

N
o

rm
a

liz
e

d
 l
o

a
d

Number of servers

ParallelNosy
FF

Figure 8: Load balancing – Query rate per server.

our evaluation to samples of the twitter and flickr social
graphs that consist of 5 million edges.

We aim at obtaining samples that resemble real-world graphs.
The problem of sampling a graph in a way that the resulting sub-
graph maintains the properties of the original graph is an ongo-
ing research problem. Therefore, we experiment with two different
sampling methods: random-walk sampling and breadth-first sam-
pling. In the experiments discussed below we use five graph sam-
ples; the plots report averages.

Figures 9 shows the predicted improvement ratio of CHITCHAT
for random walk and breadth-first samples. The main result is that
the difference between PARALLELNOSY and CHITCHAT is large,
which points to an opportunity for new heuristics and further im-
provement with social piggybacking. Overall, by comparing these
results with the ones shown in Figure 4 we see that the cost of
PARALLELNOSY is lower in real social graphs than in the sampled
graphs; consequently we expect that the cost of CHITCHAT in a
real social graph would be substantially lower too. The results in
the figures also confirm our observation that the graph-sampling
technique impacts the performance of social-piggybacking.

The algorithms are more efficient on samples obtained by the
breadth-first method than on samples obtained by the random-walk
method. This difference is due to the positive correlation between
the effectiveness of our schedules and the presence of hub nodes
with high degree. In breadth-first sample graphs, the first sam-
pled nodes have the same degree as in the original social graph.
As for random-walk sampling, existing work has pointed out that
it preserves certain clustering metrics; more precisely, in both the
original and sampled graphs, nodes with the same degree have sim-
ilar ratio of actual and potential edges between their neighbors [9].
However, other properties of the original graph may not be pre-
served; for example, edges of high-degree nodes may be pruned
out. This reduces the relative gain of social piggybacking since the
hybrid schedule of Silberstein et al. (our baseline) uses per-edge
optimizations that do not depend on the degree of nodes.

The plots show the performance of the algorithms as a func-
tion of the read/write ratio, that is, the ratio between the average
consumption and production rates. We set this ratio as high as
100, which is 20 times the reference value, to represent the ex-
treme case of a workload heavily dominated by reads. Intuitively,
if users consume information every second while producing infor-
mation only once a day then the hybrid schedule, which uses push
edges to spread the (rare) events through the network, should be
nearly-optimal. The experiments confirm this intuition.

To conclude, the results of this section reflect that the potential
of social piggybacking go beyond the performance of PARALLEL-
NOSY, and suggest interesting future work on the design of tech-
niques to scale the CHITCHAT algorithm to very large datasets.

419

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 10 100

P
re

d
ic

te
d
 i
m

p
ro

v
e
m

e
n
t
ra

ti
o

Read/Write ratio

flickr ChitChat
flickr ParallelNosy

twitter ChitChat
twitter ParallelNosy

(a) Random-walk sampling.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 1 10 100

P
re

d
ic

te
d
 i
m

p
ro

v
e
m

e
n
t
ra

ti
o

Read/Write ratio

flickr ChitChat
flickr ParallelNosy

twitter ChitChat
twitter ParallelNosy

(b) Breadth-first sampling.

Figure 9: Performance comparison of CHITCHAT and PARALLELNOSY on social graph samples.

5. RELATED WORK
Similar to the MIN-COST problem of Silberstein et al. [11], our

DISSEMINATION problem takes as input the consumption and pro-
duction rates of users, together with the social network, and uses
these rates in the definition of the cost function. We generalize
MIN-COST as a graph-propagation problem, which encompasses
multiple practical propagation policies. This enables taking advan-
tage of the high clustering coefficient of social graphs and leads to
substantial gains, as shown by our evaluation.

Pujol et al. describe SPAR, a new storage layer for social net-
working systems. When a user u produces a new event, SPAR first
stores it in its “master replica”. This master replica is located to-
gether with “slave replicas” of all friends of u; logically, all these
replicas form what we call the “view” of u. SPAR pushes new
events of u asynchronously from the master replica of u (i.e., from
the view of u) to all its slave replicas (i.e., to the views of all friends
of u). Users contact only their own views for queries. In terms of
throughput cost, SPAR uses an (asynchronous) push-all schedule
(see Section 1), which, as shown in [11], is never more efficient
than the hybrid schedule we used as our baseline. Note that all the
schedules considered in this paper can be executed asynchronously;
this can be modeled as discussed in Section 2.2.

The SPAR middleware enhances the data store layer with sev-
eral complex functionalities for data partitioning, movement, and
replication. By contrast, schedules produced by PARALLELNOSY
can be used at the client-side of standard passive data stores, such
as memcached or MySQL, so they do not require using a novel
storage layer or middleware.

Our problem definition has some similarities with the work on
optimal overlays in publish-subscribe systems initiated by Chock-
ler et at. [4]. They compute an optimal graph of physical servers
that minimizes edge degree. In our case, the social graph is given,
the mapping of users to physical servers is not known, we mini-
mize cost based on scheduling decisions and production and con-
sumption rates, and we consider the additional bounded staleness
constraint. Both problem definitions avoid the generation of use-
less messages by requiring that events are only sent to vertices that
subscribe to the topic; in our case, only views of users that follow
the producer of an event store the event.

6. CONCLUSION
Assembling and delivering event streams is a major feature of

social networking systems and imposes a heavy load on back-end
data stores. We have introduced social piggybacking, a promising
approach to increase the throughput of event stream handling by
identifying better request schedules.

We proposed two algorithms to compute request schedules that

leverage social piggybacking. The CHITCHAT algorithm is an ap-
proximation algorithm that uses a novel combination of the SET-
COVER and DENSESTSUBGRAPH and has an approximation factor
of O(lnn). The PARALLELNOSY heuristic is a parallel algorithm
that can scale to large social graphs.

We used PARALLELNOSY to compute request schedules for the
full Twitter and Flickr graphs. In small systems, we obtained sim-
ilar throughput as existing hybrid approaches, but as the size of
the system grows beyond a few hundreds of servers, the through-
put grows significantly, reaching a limit of a 2-factor improvement.
Evaluation on CHITCHAT shows that request schedules using so-
cial piggybacking have an even higher potential for cost reduction.

7. REFERENCES
[1] Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama.

Greedily finding a dense subgraph. Journal of Algorithms,
34(2):203–221, 2000.

[2] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gummadi.
Measuring user influence in Twitter: The million follower
fallacy. In Proc. of ICWM, volume 14, page 8, 2010.

[3] M. Charikar. Greedy approximation algorithms for finding
dense components in a graph. In Proc. of APPROX, pages
139–152, 2000.

[4] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg.
Constructing scalable overlays for pub-sub with many topics:
Problems, algorithms, and evaluation. In Proc. of PODC,
pages 109–118, 2007.

[5] V. Chvatal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4(3):233–235, 1979.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[7] U. Feige. A threshold of ln n for approximating set cover.
Journal of the ACM, 45(4):634–652, 1998.

[8] B. A. Huberman, D. M. Romero, and F. Wu. Social networks
that matter: Twitter under the microscope. First Monday,
14(1-5), 2009.

[9] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In Proc. of KDD, pages 631–636, 2006.

[10] M. E. Newman. The structure and function of complex
networks. SIAM review, 45(2):167–256, 2003.

[11] A. Silberstein, J. Terrace, B. F. Cooper, and
R. Ramakrishnan. Feeding frenzy: selectively materializing
users’ event feeds. In Proc. of SIGMOD, pages 831–842,
2010.

420

