
Supporting Domain-Specific State Space Reductions

through Local Partial-Order Reduction

Péter Bokor

TU Darmstadt

Darmstadt, Germany

pbokor@cs.tu-darmstadt.de

Johannes Kinder

EPFL

Lausanne, Switzerland

johannes.kinder@epfl.ch

Marco Serafini

Yahoo! Research

Barcelona, Spain

serafini@yahoo-inc.com

Neeraj Suri

TU Darmstadt

Darmstadt, Germany

suri@cs.tu-darmstadt.de

Abstract—Model checkers offer to automatically prove safety
and liveness properties of complex concurrent software systems,
but they are limited by state space explosion. Partial-Order
Reduction (POR) is an effective technique to mitigate this burden.
However, applying existing notions of POR requires to verify
conditions based on execution paths of unbounded length, a
difficult task in general. To enable a more intuitive and still
flexible application of POR, we propose local POR (LPOR).
LPOR is based on the existing notion of statically computed
stubborn sets, but its locality allows to verify conditions in single
states rather than over long paths.

As a case study, we apply LPOR to message-passing systems.
We implement it within the Java Pathfinder model checker using
our general Java-based LPOR library. Our experiments show
significant reductions achieved by LPOR for model checking rep-
resentative message-passing protocols and, maybe surprisingly,
that LPOR can outperform dynamic POR.

I. INTRODUCTION

The use of formal verification methods can avoid failures

in the design or implementation of a system and is thus of

growing importance for the development processes of complex

software. A successful and widely used method is model

checking [8], which allows the fully automated verification

of temporal properties. Model checking is limited by state

explosion, however, a fundamental problem in verification,

especially of concurrent systems.

The state space explosion problem can be greatly mitigated

by Partial-Order Reduction (POR) [8], a general concept for

reducing the model checking resources such as memory and

time. Several notions of POR implement this concept [8], [23],

[11], differing from each other in flexibility and efficiency.

The commonality of these approaches is that the developer of

a model checker is expected to verify complex conditions to

guarantee soundness. This hurdle can prevent developers from

implementing POR or even lead to erroneous implementations.

In this paper, we propose an approach that simplifies the

conditions to be verified, but gives up neither the flexibility nor

the efficiency of POR. Next, we explain why previous notions

of POR are difficult to use and how our approach improves

on them.

The general concept of POR lies in the commutativity

of non-interfering transitions. Conceptually, a transition is a

Research supported in part by EC FP7 INDEXYS, LOEWE TUD CASED,
and DFG TUD GKMM GRK 1362.

Fig. 1. Non-interfering transitions t1 and t2. States s12 and s3 are deadlocks.

mechanism to change the state of the system, e.g., a Java

method, or the delivery of a message. POR is based on the sim-

ple observation that the execution of non-interfering transitions

leads to the same state irrespective of which of these transitions

is executed first. In Figure 1, t1 and t2 are non-interfering

because both paths s
t1−→ s1

t2−→ s12 and s
t2−→ s2

t1−→ s12
lead to s12. Therefore, it is sufficient to explore the execution

of these transitions in a single representative order, reducing

memory and time required for model checking.

POR is sound if no state is missed that is relevant for

verifying the target property. For example, although t1 and t2
are non-interfering, it is an unsound reduction to explore only

the path s
t1−→ s1

t2−→ s12 if the property states the reachability

of s3. Existing notions of POR define necessary conditions

of soundness that are hard to check in general because they

require global knowledge about the state graph, which limits

the applicability of POR. This problem is usually addressed

by fixing the application of POR to a particular specification

language and computational model, such that soundness is

guaranteed by construction. As a result, existing specification

languages with POR support are few and restrictive in dif-

ferent ways: they consider restricted computational models,

for example FIFO-based message-passing [14], [13], Petri

nets or process algebras [23], they only allow models with

deterministic transitions [11], [8] or acyclic state graphs [10],

[21], they preserve only invariants [12], [10], [15], or they

only support bug finding [15].

We present a novel take on POR, to ease its application to

rich specification languages. We call our approach local POR

(LPOR) because locality is key to simplify the verification

of POR conditions for designing new model checkers; in

fact, the simplicity of LPOR allows an easy development

of new PO reductions. LPOR consists of an input interface

(accessible by the user of LPOR) and a POR algorithm

(hidden from the user).1 At the interface of LPOR, the user

defines locally “interfering” transitions, whose soundness can

be verified more easily than the global (path-based) soundness

conditions in other POR approaches. This local information

is sufficient for our LPOR algorithm to efficiently compute

sound partial-order reductions. In the example of Figure 1, the

user can define and verify the following local interferences:

t2 can enable t3 (when executed in s), and t1 is dependent

on (is disabled by) t3 (when executed in s2). Based on this

information, the LPOR algorithm knows that t1 and t2 are

non-interfering and can establish that exploring only the paths

s
t2−→ s2

t1−→ s12 and s
t2−→ s2

t3−→ s3 preserves all deadlock

states, a fundamental preservation property used by LPOR to

preserve more complex specifications.

In the following, we further detail our main contributions.

LPOR stubborn set algorithm. LPOR’s interface (Sec-

tion II) contains two intuitive relations between transitions,

namely can-enable and dependency. Each of these relations

is local, i.e., they are defined given paths of at most length

two. Transitions that are not included in these relations are

considered to be non-interfering and are used by LPOR to

achieve reduction. The user has to prove the non-interferences

correct, but it is sound to declare transitions as interfering

even when they are not. An important feature of LPOR is that

non-interfering transitions are completely configurable, while

other approaches conservatively assume certain transitions to

be interfering, e.g., transitions executed by the same process

[8]. LPOR also supports necessary enabling transitions, which

we generalize from [11]. Although the definition of such

transitions does involve paths, they naturally appear in high-

level languages.

The LPOR algorithm (Section III) computes stubborn sets

statically [23] and supports general transition systems without

assumptions about the state graph or transitions. Intuitively, a

stubborn set is a large enough subset of the transitions enabled

in the current state, e.g., {t2} in s in Figure 1, such that no

deadlock state remains unvisited if only transitions in stubborn

sets are executed. LPOR leverages stubborn sets to preserve

properties in the temporal logic CTL∗−X . LPOR is fast thanks

to a novel pre-computation scheme, which allows to compute

information needed by LPOR once, before model checking,

and then to repeatedly use it in every new state.

Applying LPOR to message-passing. We instantiate the

relations at LPOR’s interface for general message-passing

systems (Section IV). This example also shows that the use of

LPOR is straightforward for domain experts.

We briefly discuss two additional LPOR application exam-

ples. First, we use a Petri net example in explaining the LPOR

1In the remainder of this paper, by user we mean the user of LPOR and
not necessarily the end-user of the model checker.

algorithm (Section III-B). Second, we show how the POR

approach used in the SPIN model checker can be expressed

in LPOR terms (Section VII).

Experiments and comparison with DPOR. We implement

LPOR as an openly available Java library called Java-LPOR

(Section V) that easily integrates with existing model checkers.

As an example use case of Java-LPOR, we implement our

message-passing instantiation of LPOR in the Java Pathfinder-

based model checker MP-Basset [5].

We evaluate the efficiency of LPOR using message-passing

examples. Our experiments with MP-Basset show that LPOR

achieves significant (up to 94%) time and space reductions

for model checking real-world fault-tolerant message-passing

protocols (Section VI). Furthermore, countering current no-

tions of dynamic POR being superior to static POR [10], we

also show that LPOR (implementing static POR) competitively

improves upon dynamic POR without entailing the constraints

of dynamic POR.

II. THE LPOR INTERFACE

The typical application scenario of LPOR is adding POR

to the analysis of systems written in some specification

language. Assume that a model checker implementing the

LPOR algorithm (Section III) is available for this language.

We will show in Section V how we support the integration

of LPOR into existing model checkers. Now, the user, an

expert in the domain of the language, must provide two inputs

at LPOR’s interface. First, unless it is not already available,

she must define the semantics of the language in terms of

a state transition system (Section II-A). Second, based on

her domain-specific knowledge, she defines and proves two

intuitive relations containing pairs of interfering transitions

(Section II-B). These relations are local considering paths of

length at most two. LPOR leverages a third optional relation,

which is not strictly local, but naturally appears in high-level

languages.

A. Non-deterministic State Transition Systems

A state transition system (STS) is a triple (S, T, S0) where

S is the set of states, T is the set of transitions, and S0 ⊆ S

is the set of initial states. Every transition t ∈ T is a relation

t ⊆ S × S. A transition t is enabled in s ∈ S iff there is an

s′ ∈ S such that (s, s′) ∈ t. Otherwise, t is disabled in s. The

set of all enabled transitions in s is denoted by enabled(s). A

state s ∈ S is called a deadlock if enabled(s) = ∅. We write

s0
t1t2...tn−−−−−→ sn and say that there is a path from s0 to sn iff

for every 0 ≤ i < n we have that (si, si+1) ∈ ti+1. In this

case, we say that sn is reachable from s0. If s0 ∈ S0, then

we say that sn is reachable. A transitions t is said to be in a

path s0
t1t2...tn−−−−−→ sn if t is among t1, t2, . . . , tn.

Our approach allows transitions to be non-deterministic, i.e.,

given t ∈ T and s ∈ S, there might be multiple s′ ∈ S such

that (s, s′) ∈ t. Other approaches, e.g., [11], [8], are restricted

to deterministic transitions. On the one hand, while a transition

system always allows to refine a non-deterministic transition

into several deterministic transitions, an implementation of

such a refinement is not necessarily straightforward for a

particular system model. Furthermore, the performance of

POR algorithms can be adversely affected by an increase in

|T |, the number of all transitions. On the other hand, refining

transitions can improve space reduction, since only some of

the refined transitions might have to be contained in a stubborn

set [11], [5]. Not requiring deterministic transitions leaves

a larger design space for exploring trade-offs in transition

refinement.

B. Interfering Transitions

A transition t can enable another transition t′, if in at least

one state where t′ is disabled, executing t results in a state

where t′ is enabled. We say that a relation is can-enabling if

it is a superset of all pairs (t, t′) of transitions such that t can

enable t′.

Definition 1: A relation ce ⊆ T × T is can-enabling iff

ce ⊇ {(t, t′) | ∃s, s′ ∈ S : s
t
−→ s′ ∧ t′ 6∈ enabled(s) ∧ t′ ∈

enabled(s′)}.

We define that t′ is dependent on t if both t and t′ are

enabled in some state (t and t′ are co-enabled) and either (a)

t can disable t′ or (b) their subsequent execution in different

orders results in different states (t and t′ do not commute).

By convention, t is not dependent on itself. We say that two

transitions are dependent (independent) if one (none) of them

is dependent on the other. Note that the following relation is

not necessarily symmetric.

Definition 2: A relation dep ⊆ T × T is a dependency

relation, iff dep ⊇ {(t, t′) | t 6= t′ ∧ ∃s, s′ ∈ S : t, t′ ∈

enabled(s) ∧ s
t
−→ s′ and either (a) t′ 6∈ enabled(s′) or (b)

∃s′′ ∈ S : s
tt′

−→ s′′ and not s
t′t
−→ s′′}.

Next, we define a relation that contains a pair of transitions

t and t′ if t′ is a necessary enabling transition (NET) for t, i.e.,

t′ must be executed at least once for t to be enabled (adapted

from necessary enabling sets [11]). Note that this relation is

based on paths. It is purely optional though as it is sound to not

include pairs of transitions in a NET relation or, in particular,

to define an empty one. Similarly, it is always sound to include

a pair of (even non-interfering) transitions in can-enabling and

dependency relations.

Definition 3: A relation net ⊆ T × T is a necessary

enabling transition (NET) relation, iff net ⊆ {(t, t′) | ∀s0 ∈

S0, ∀s ∈ S, ∀t1, . . . , tn ∈ T : if s0
t1t2...tn−−−−−→ s ∧ t ∈

enabled(s), then t′ = ti for some 1 ≤ i ≤ n}.

Note that the transitive closure of every NET relation is also

a NET relation. Every user-provided NET relation can thus be

extended to its closure.

III. THE LPOR STUBBORN SET ALGORITHM

Now we present LPOR, our local partial-order reduction al-

gorithm. Formally, LPOR computes stubborn sets [23], which

are subsets of enabled(s) in a state s such that it is sufficient to

explore transitions in such a subset. LPOR can be configured to

preserve properties from simple deadlock-freedom to arbitrary

LTL−X and CTL∗−X specifications. LPOR can be adapted to

similar POR semantics such as ample [8] or persistent sets

[11]. We chose stubborn sets because they allow the most

relaxed system model. For example, both persistent and ample

sets assume deterministic transitions.

LPOR is a static POR algorithm, i.e., given a state s of

the system, LPOR outputs a stubborn set in s without further

exploration (as opposed to dynamic POR [10]). Therefore,

LPOR can be implemented in stateful (even parallel [22])

explicit-state model checking. We present a simplified variant

of the LPOR algorithm that assumes that the search path, i.e., a

path from an initial state to s, is available. The search path can

be obtained by depth-first search. However, a generalized form

of LPOR makes no assumption about the search path and is

compatible with both depth and breadth-first search. Therefore,

it is amenable to symbolic (Binary Decision Diagram-based)

implementations [3] as well. For space reasons, the generalized

LPOR algorithm is presented Appendix I.2

We first review stubborn sets (Section III-A), then we

present the core LPOR algorithm and sketch its correctness,

i.e., LPOR indeed computes stubborn sets (Section III-B).

Then, we discuss some optimizations of LPOR (Section III-C)

and the preservation of general temporal properties (Section

III-D).

A. Preliminaries: Stubborn Sets

Given a state s0, a set stub(s0) of transitions is (weakly)

stubborn if the two properties D1 and D2 are satisfied [23].

D1 verifies the commutativity of transitions in the stubborn set

with transitions outside the stubborn set. D2 ensures that there

is at least one transition that cannot be disabled by transitions

outside the stubborn set.

D1 ∀t ∈ stub(s0), ∀t1, t2, . . . , tn ∈ T \ stub(s0), ∀sn ∈ S :

if s0
t1t2...tnt−−−−−−→ sn then s0

tt1t2...tn−−−−−−→ sn.

D2 If enabled(s0) 6= ∅ then ∃t ∈
stub(s0), ∀t1, t2, . . . , tn ∈ T \ stub(s0) : if

s0
t1t2...tn−−−−−→ sn then t ∈ enabled(sn). Such a transition

t is called key transition.

A stubborn set is called strong if every t ∈ stub(s0) ∩
enabled(s0) is a key transition. Note that a key transition is

always enabled in s0. The unreduced state graph is explored

by starting from an initial state and executing every transition

in enabled(s) when a new state s is visited. The reduced state

graph is obtained by executing only the enabled transitions

from stub(s). If t ∈ stub(s) and t is non-deterministic, then

every s′ with (s, s′) ∈ t is visited. D1 and D2 guarantee

that all deadlocks of the unreduced state graph are contained

in the reduced one. In order to preserve properties other

than deadlock-freedom, stub(s0) needs to satisfy additional

constraints [23], [16]. Note that transitions in stub(s) are

not necessarily enabled in s. Although disabled transitions

cannot be executed, they can ease the design of stubborn set

algorithms [11] and even result in smaller stubborn sets when

used to preserve certain temporal properties [23].

2Appendices are included in the technical report version of this paper
available online [6].

function FwdEnableSetIdx(t, t′)
1 forall (t′′, en) ∈ FwdEnableSet(t) do

2 if (t′′, t′) ∈ dep then return true;

3 return false;

function FwdEnableSet(tr)
4 Tr

′ ← {(tr , ∅)};

5 do

6 Tr ← Tr
′;

7 forall t1 ∈ T do

8 forall (t, en) ∈ Tr do

9 if (t, t1) ∈ ce then

10 en1 ← en ∪ {t2 | (t1, t2) ∈ net};

11 Tr
′ ← Tr

′ ∪ {(t1, en1)};

while Tr 6= Tr
′;

12 return Tr ;

Algorithm 1: FwdEnableSet(t) and

FwdEnableSetIdx (t, t′) are pre-computed for every

t, t′ ∈ T .

13 Stub ← {tI};

14 Trans ← {tI};

15 while Trans 6= ∅ do

16 choose t ∈ Trans;

17 Trans ← Trans \ {t};

18 forall t1 ∈ enabled(s) \ Stub do

19 if (t1, t) ∈ dep then

20 Stub ← Stub ∪ {t1};

21 if dep is non-transitive then Trans ← Trans ∪ {t1};

22 else if FwdEnableSetIdx(t1, t) then

23 if ∃(tdep, en) ∈ FwdEnableSet(t1) : (tdep, t) ∈ dep

24 ∧(en = ∅ ∨ ∀t2 ∈ en : (t2 6∈ Stub ∨ t2 ∈ τ)) then

25 Stub ← Stub ∪ {t1};

26 Trans ← Trans ∪ {t1};

27 return Stub;

Algorithm 2: The LPOR(tI , s, τ) stubborn set algorithm

for a state s ∈ S, an initial transition tI ∈ enabled(s), and

a current search path τ ∈ T ∗.

B. The Stubborn Set Algorithm

As stated before, the use of NET in LPOR is optional.

We therefore start out by explaining the LPOR algorithm

(Algorithm 2) without the NET optimization where net = ∅.

1) Forward enable sets: LPOR uses two helper functions

FwdEnableSetIdx (t, t′) and FwdEnableSet(t) (Algorithm 1),

whose return values can be pre-computed (before model

checking), because they are independent of the state. The

first function returns true if t can be the first in a sequence

of enabling transitions that enables another transition t′′ on

which t′ is dependent (lines 1-3). FwdEnableSetIdx is defined

based on the forward enable set FwdEnableSet(t) of t,

which contains those transitions that can be enabled through

a sequence of enabling transition starting with t (lines 4-12).

More precisely, the set contains all transitions t′ such that

(t, t′) is in the transitive closure of a can-enabling relation

ce. The set contains tuples of the form (t, en) where t is a

transition and en is a set of transitions, which is used in the

NET-optimized version of LPOR. If the NET relation is empty,

en is also empty (line 10). We now explain how LPOR uses

these two functions to compute stubborn sets.

2) Stubborn set computation: In addition to the relations

ce, dep, and net, LPOR has three parameters: (1) a transition

tI ∈ enabled(s), called initial transition, which is in the

stubborn set, (2) the current state s, and (3) the search path

τ ∈ T ∗ (for Algorithm 2, it suffices that τ is a set containing

t1, . . . , tn). From D2, no stubborn set in s can be empty unless

enabled(s) = ∅. Conceptually, LPOR proceeds, similarly to

other static POR algorithms, by applying different rules of the

form “if t is in the stubborn set, then transitions t1, t2, . . . must

also be in the set”. In this case, we say that t1, t2, . . . are added

on behalf of t. LPOR maintains two sets of transitions: Stub,

which represents the stubborn set (line 13) and Trans, which

contains a transition t in Stub such that new transitions might

be added to Stub on behalf of t (line 14). Therefore, LPOR

adds transitions to Stub until Trans is empty (lines 15-26) and

Stub is returned (line 27). We now explain how transitions are

added on behalf of a transition t in Trans.

First, we add those enabled transitions t1 that t is dependent

on (lines 19-21). We add t1 if either t1 and t do not commute

(disallowed by D1) or it can disable t (which can violate D2).

Note that dep does not have to be symmetric as D1 allows

that t and t1 do not commute. We will show an example of

this case in a message-passing instance of LPOR (Section IV).

There is another way to violate the stubborn set conditions:

an enabled transition t1 outside the stubborn set can start a

sequence of enabling transitions that enables another transition

on which t is dependent (D1). This can only happen if

FwdEnableSetIdx (t1, t) is true (line 22). In this case, we

add t1 to the stubborn set (line 25). Note that the condition

in lines 23-24 is trivially true if LPOR is run without NET

optimization because the en-sets are empty.

In both previous cases, t1 is added to Trans (line 21 and

26) so that LPOR can verify whether new transitions must

be added on behalf of t1. We discuss the optimization for

transitive dependency relations (line 21) in Section III-C.

3) NET optimization: Stubborn set computation can benefit

from the NET relation if more than one transition t2 is

necessary for some transition t1 to be enabled. In this case, a

stubborn set does not need to contain all such t2 but only one

that has not been executed yet. The NET optimization cannot

be fully pre-computed as the check whether “a transition has

not been executed yet” can only be carried out during the

search. However, we can store these t2 transitions in the en-

field associated with t1. It is key to our NET optimization that

the content of en-fields is propagated along the can-enabling

relation, i.e., if t can enable t1 and (t, en) and (t1, en1) are in

a forward enable set, then en ⊆ en1 (line 10). This is because

the transitions necessary to be executed for t to be enabled

are, transitively, also necessary to be executed for t1 to be

enabled.

Then, using the notation of Algorithm 2, if some t2 is in

the en-field associated with a transition tdep, we can verify,

given the current state s, that “t2 has not been executed yet”.

Assume that (tdep, en) is in the forward enable set of t1 and

the conditions in lines 22-23 are true. Then, we only add t1
to the stubborn set if either t2 is not in the stubborn set or

t2 has already been executed, i.e., is contained in the model

checker’s current search path τ (line 24). Note that, for some

transition t, (t, en) can be in a forward enable set multiple

Fig. 2. A Petri net example.

times with different en. This is possible if t can be enabled

by different sequences of transitions.

4) Example: We illustrate the LPOR algorithm on

a simple Petri net example (Figure 2). For this net,

ce = {(t3, t2), (t4, t3), (t5, t3)}, dep = {(t1, t2), (t2, t1)},

net = {(t4, t3), (t5, t3)} are valid enabling, dependency, and

NET relations, respectively. Note that we omit the possible

(t3, t2), (t4, t2), and (t5, t2) from net for this example. Figure

2 depicts the initial token marking s; the set of enabled

transitions in s is {t1, t4, t5}. Consider a run of LPOR in s

with initial transition t1, i.e., LPOR(t1, s, ()). As t2 is disabled

in s, no transition is added to the stubborn set in lines 19-21.

Supposed that transitions are processed by ascending index,

t4 is added to the stubborn set because FwdEnableSet(t4) =
{(t4, ∅), (t3, {t4, t5}), (t2, {t4, t5})}, (t2, t1) ∈ dep, and

t4 and t5 are both not in the stubborn set. However,

thanks to the NET optimization t5 is not added because

FwdEnableSet(t5) = {(t5, ∅), (t3, {t4, t5}), (t2, {t4, t5})}, t4
already is the stubborn set, and τ is empty. As a result,

LPOR(t1, s, ()) = {t1, t4} ⊂ enabled(s).
5) Correctness: The next theorem states that LPOR indeed

generates stubborn sets. The proof of the theorem can be found

in Appendix II. A sketch of the proof is given below.

Theorem 1: Let (S, T, S0) be an STS and ce,dep, and net

a can-enabling, dependency, and NET relation, respectively.

Then, for all s ∈ S, tI ∈ enabled(s), and τ ∈ T ∗ with

∃s0 ∈ S0 : s0
τ
−→ s, LPOR(tI , s, τ) is a stubborn set.

Proof sketch.: A key property of LPOR is that, when

executed in a state s = s0, every transition t in LPOR(tI , s, τ)
is independent of all transitions t1, t2, . . . , tn that are in a path

starting from s and that are outside LPOR(tI , s, τ). To show

that D1 and D2 hold, consider the paths starting from s0, as

illustrated in Figure 3.

We first show that t is a key transition (D2). Indirectly,

assume that ti for some 1 ≤ i ≤ n can disable t, i.e.,

t 6∈ enabled(si). Therefore, t must be dependent on ti, a

contradiction by the previous property.

As t is a key transition, t ∈ enabled(si) for every 1 ≤ i ≤

n. Let s′n be a state such that sn−1
tn−→ sn

t
−→ s′n. From the

Fig. 3. Illustration of the proof of Theorem 1.

above property, t is independent of tn, so there exists s′n−1

such that sn−1
t
−→ s′n−1

tn−→ s′n. Repeating this rule n times,

we obtain a path s
t
−→ s′

t1−→ s′1
t2−→ ...

tn−1

−−−→ s′n−1
tn−→ s′n,

which proves D1.

6) Worst-case complexity: Algorithm 2 is guaranteed to

terminate (proof in Appendix II) and has worst-case time

complexity O(|T |32|T |) with and O(|T |2) without NET opti-

mization. Despite the worst-case exponential overhead of the

NET optimization, our experiments show that LPOR with NET

can achieve significant reductions of model checking time

(Section VI).

We now sketch the idea behind the above complexity results.

Assume that checks for set inclusion and adding/removing

elements to/from sets take constant time. The basic quadratic

time complexity in |T | is due to (1) Trans containing at most

|T | transitions (line 15), and (2) adding at most |T | transitions

to the stubborn set on behalf of every transition in Trans (line

18). Note that every transition in Trans is also in Stub and no

transition is ever removed from Stub. Therefore, the condition

in line 18 and that enabled(s) is fixed throughout an execution

of Algorithm 2 guarantee that every transition is added at most

once to Trans. Without NET optimization, the condition in

lines 23-24 is always true. Therefore, no computation overhead

is added in this case. With NET optimization, the condition

requires to range through possibly each element in a forward

enable set and check if this element is in the stubborn set. As

elements of the forward enable set are tuples of a transition

and a subset of transitions, the maximum size of such a set is

|T |2|T |.

C. Further Optimizations and Possible Extensions

First, if the dependency relation is transitive, then the

enabled transition t1 does not have to be added to Trans (line

21). This is sound because all transitions that would be added

to the stubborn set on behalf of t1 are also added on behalf

of t.

LPOR is a non-deterministic algorithm with three main

sources of non-determinism, each of them possibly affecting

the size of the stubborn set: (1) the selection of the initial

transition, (2) the selection of t in line 16, and (3) the order

in which forall iterates through the transitions in line 18. The

tuning of these parameters in such a way that they result in

small stubborn sets depends on the analyzed system.

We improve the NET-optimization by making it state-

conditional, i.e., t′ is a NET for t in a state s if t is not

enabled in s and t′ must be in any path starting from s before

t can be enabled. The details of this optimization can be found

in Appendix I. While state-conditionality can increase the

achieved state-reduction, it also increases the time-overhead

by limiting the possibilities for pre-computation.

The NET optimization can be generalized to necessary

enabling sets, i.e., for each transition t a set T ′ of transitions

such that at least one transition in T ′ must be executed for t

to be enabled. This gives more flexibility compared to LPOR

where T ′ contains at most one transition.

LPOR computes strong stubborn sets, which implies that

all transitions that can disable a transition t in the stubborn

set are also included in the set. In general, it is possible that

a transition is removed from a strong stubborn set such that

the resulting set is stubborn in the weak but not in the strong

sense. However, an algorithm computing weak stubborn sets

can incur a higher time overhead; in LPOR, this would require

to refine dependency in terms of “can disable” and “might not

commute” relations.

D. Preserving Temporal Logics with LPOR

The reduced search using stubborn sets preserves all dead-

locks of the unreduced state graph. In order to preserve other

properties such as invariants or liveness, stubborn sets must

satisfy constraints in addition to D1 and D2. LPOR can be

configured to preserve a general class of properties written in

CTL∗−X (Computational Tree Logic without the next operator)

[8], [16]. Subclasses of this logic include simple invariants or

LTL−X (Linear Temporal Logic without the next operator).

For details of how LPOR can be used to preserve CTL∗−X

properties, we refer the reader to Appendix III.

IV. A CASE STUDY: LPOR FOR MESSAGE-PASSING

We now briefly introduce a general language for message-

passing systems (with detailed formalization in Appendix V)

and define suitable LPOR relations (from Section II). The

simplicity of these definitions shows that the use of LPOR

is indeed straightforward for domain experts.

A. Specifying Message-Passing Systems

A message-passing (MP) system (or protocol) consists of

processes that communicate via messages. Every process

maintains a local state that is updated by executing local,

guarded transitions from a set T . A transition t is executed

by process id(t) if the guard of t evaluates to true; the guard

depends on the incoming messages and the local state of the

process. The execution of a transition is an atomic event which

consumes zero or more messages received by the executing

process, changes the local state, and sends multiple messages

on behalf of the process. A transition is called a quorum tran-

sition if it can consume multiple messages. Transitions can be

non-deterministic. For example, if a transition can be executed

for two different incoming messages, then the first message

to be consumed by the transition is non-deterministically

selected. The global state of the system consists of the

local process states and all undelivered messages. An STS

corresponding to an MP protocol can be naturally defined such

that S, T and S0 are the sets of states, transitions, and initial

states of the MP system, respectively.

So far, the language resembles the usual formalization

of message-passing systems [2], [4]. Now, we extend the

syntax with some special transitions. Every transition t can

be associated with t.MI (and t.MO), the set of messages

possibly received (sent) by t, and t.I (and t.O), the set of

processes that t can receive (and send) messages from (to).

We assume the local state of a process to be an assignment

of values to local variables. Given a variable x, t is a write

transition with respect to x and we write x ∈ W (t) if t can

change the value of x in some state. Similarly, t is called

a read transition (x ∈ R(t)) if the guard of t depends on

the value of x. As a special case, a write transition t is an

increment transition (x ∈ Inc(t)) if t always increases the

value of x. Increment transitions are relevant in the context

of timestamp-compare read transitions t (x ∈ CompTS (t)), a

class of transitions common in concurrent systems, e.g., [17].

Such a transition t uses x to store a “timestamp” and compare

it with the timestamps of incoming messages. The guard of

t can be true only if the timestamp of the message is greater

or equal than the current value of x. The sets R(t), W (t),
Inc(t), and CompTS (t) can be conservatively determined by

lightweight static analysis.

B. LPOR Relations for Message-Passing Systems

1) Can-enable relation: We say that a transition t can

locally enable another transition t′ of the same process if t is a

write and t′ is a read transition with respect to some common

variable x. An exception to this rule is if t is an increment

and t′ is a timestamp-compare transition with respect to x.

In this case t cannot enable t′ because a process sends no

new message to itself and the timestamp x is increased by t.

Formally, can-local-enable = {(t, t′) | id(t) = id(t′) ∧ ∃x ∈
W (t) ∩ R(t′) : x 6∈ Inc(t) ∩ CompTS (t′)}, where id(t)
denotes the process executing transition t.

A transition t can remotely enable a transition t′ if it

may send messages that can be received by t′. A necessary

condition for this to happen is that t and t′ are executed by

different processes (id(t) 6= id(t′)), that transition t can send

a message to the process executing t′ (id(t′) ∈ t.O), that

transition t′ can receive a message from the process executing

t (id(t) ∈ t′.I), and that t can send a message that can be

received by t′ (t.MO ∩ t′.MI 6= ∅). Therefore, we define

that can-remote-enable = {(t, t′) | id(t) 6= id(t′) ∧ id(t′) ∈
t.O ∧ id(t) ∈ t′.I ∧ t.MO ∩ t′.MI 6= ∅}.

Definition 4: Given an MP system, MP-can-enable =
can-remote-enable ∪ can-local-enable.

2) Dependency relation: A transition t′ is dependent on t

if both are executed by the same process or if t can remotely

enable t′. The intuition is that local transitions may change the

state of the same process and, if t can remotely enable t′, then

t can send a message that is processed by t′. Our dependency

relation can be refined by excluding pairs of transitions that

are executed by the same process and access a disjunct set

of variables. This is a refinement that we do not consider in

this paper. Note that the following relation can be asymmetric,

which enables LPOR to compute smaller stubborn sets.

Definition 5: Given an MP system, MP-dependency =
{(t, t′) | t 6= t′ ∧ id(t) = id(t′)} ∪ can-remote-enable.

3) NET relation: The following NET relation is based on

the observation that a transition t with t.I 6= ∅ cannot be

enabled unless a process sends a message to process id(t).
For example, imagine that t represents a function that requires

input from a majority of processes. This implies that |t.I| =
⌈n
2 ⌉, i.e., a majority of the number of all processes n. Then,

t can be enabled only after each of these processes has sent a

message to process id(t).
Note that we have to check two additional conditions to

make sure that a transition is indeed a NET for t. Firstly, t is

required to be input-deterministic, i.e., t always consumes a

message from every process in t.I . Otherwise, t can possibly

be enabled even if a process in t.I sends no message to process

id(t). Secondly, it is possible that i ∈ t.I and process i has

multiple transitions, say t′ and t′′, that can enable t (formally,

id(t′′) = id(t′) ∧ t′′ 6= t′ ∧ {(t′, t), (t′′, t)} ⊆ can-remote-

enable). In this case, neither t′ nor t′′ is necessarily a NET

for t.

The NET relation is defined below. In Appendix I, an

example is shown of how the content of the channels can

be used to make this relation state-conditional.

Definition 6: Given an MP system, MP-NET

= {(t, t′) | t is input-deterministic ∧ id(t′) ∈ t.I ∧ ∀(t′′, t) ∈
can-remote-enable: t′′ = t′ ∨ id(t′′) 6= id(t′)}.

The next theorem states that the above relations are indeed

LPOR relations as of Section II-B, a task that must be carried

out by the user. The proof of this theorem can be found in

Appendix IV.

Theorem 2: Given an MP system, MP-can-enable, MP-

dependency and MP-NET are can-enabling, dependency, and

NET relations, respectively.

V. JAVA-LPOR: AN LPOR IMPLEMENTATION

We implement LPOR in a Java library, called Java-LPOR.

Java-LPOR can be integrated into any explicit state model

checker. The LPOR algorithm currently implemented by Java-

LPOR computes stubborn sets satisfying D1, D2, and an

additional constraint regarding visible transitions [8], i.e.,

transitions that might interfere with the target property. This

constraint of visible transitions allows LPOR to preserve

invariants, i.e., state-local assertions that must hold in every

reachable state. The source code of Java-LPOR is available

for download3.

The main steps of integrating Java-LPOR are as follows.

As a running example, we show how we used Java-LPOR to

implement message-passing LPOR from Section IV.

1) Specifying the transitions: Before the search can start,

the transitions of the system must be provided as Java

classes. For example, the input language of MP-Basset [5], our

model checker for message-passing protocols, is an extension

3http://www.deeds.informatik.tu-darmstadt.de/peter/Java-LPOR.jar

of Java and implements the language from Section IV-A.

Within MP-Basset, transitions are represented by the class

TransitionMP.

2) Implementing the LPOR relations: Java-LPOR exports

LPOR’s relations via the following interface. This generic

interface is parametric in the class T of transitions.

public interface LPORRelations<T> {

public boolean dep(T t1,T t2);

public boolean canEnable(T t1,T t2);

public boolean net(T t1,T t2);

}

For example, the following snippet shows the implementa-

tion of our dependency relation for message-passing systems

(compare with Definition 5). The method t1.isLocal(t2)

returns true iff id(t1) = id(t2).

public boolean dep(TransitionMP t1,TransitionMP t2){

return !t1.equals(t2) &&

t1.isLocal(t2) || canRemoteEnable(t1, t2);

}

3) Setting up LPOR: For the preservation of invariants,

Java-LPOR requires to identify visible transitions. In our

current implementation, the user is required to annotate visible

transitions using the following interface.

public interface VisibilityChecker<T> {

public boolean isVisible(T t);

}

Given the list of all transitions trans, the LPOR rela-

tions rel, and a class vis for checking visible transitions,

an LPOR utility instance can be created. Its constructor is

responsible for pre-computing the forward enable sets. The

instance of LPORUtil can then be used to compute stubborn

sets for a particular state by invoking the LPOR method. As

arguments, the method requires an initial transition and the list

of enabled transitions. Transitions are identified by their index

in trans.

public class LPORUtil<T>{

public LPORUtil(List<T> trans,

LPORRelations<T> rel,

VisibilityChecker<T> vis){

this.trans=trans;

this.rel=rel;

this.vis=vis;

precompute();

}

public int[] LPOR(int t_I, int[] enabledTrans){

...

}

...

}

4) Computing stubborn sets: Finally, the following snippet

shows how the set of transitions that must be executed in a

state is pruned by a call to the LPOR method of an LPORUtil

instance. This is also how we integrated Java-LPOR into MP-

Basset.

enabledTrans=lporUtil.LPOR(initTrans, enabledTrans);

VI. LPOR EXPERIMENTS

In this Section, we present our results of using LPOR to

model check various fault-tolerant message-passing protocols.

TABLE I
PERFORMANCE RESULTS OF LPOR IMPLEMENTED WITHIN MP-BASSET USING JAVA-LPOR.

Unreduced DPOR
LPOR

Protocol
Res. Stateless LPOR only LPOR + NET

(# processes)
States Time States Time States Time (on-line) States Time (on-line) States Time (on-line)

Paxos (6) OK >38mil >192h 3,305,752 22h53m 1,118,341
MJI 6h14m (6h19m)

1,130,234
MJI 6h59m (7h1m)

548,061
MJI 3h18m (3h21m)

Mod. 8h51m (28h32m) Mod. 8h51m (24h10m) Mod. 4h45m (18h52m)

F-Paxos (6) CE 238,790 1h34m 2,028 50s 3489 MJI 1m16s 3489 MJI 1m43s 3415 MJI 1m40s

F-Paxos2 (7) CE >16mil >192h 21,177 12m31s 175,725 MJI 1h24m 173,414 MJI 1h25m 173,414 MJI 1h28m

Register (5) OK 287,638 47m 27,763 6m50s 27,763
MJI 5m57s (5m59s)

18,451
MJI 4m32s (4m32s)

18,451
MJI 4m36s (4m36s)

Mod. 6m17s (9m23s) Mod. 5m3s (7m1) Mod. 4m55 (7m52s)

Register (5) CE 7,619 1m52 2,344 40s 4,654 MJI 1m4s 3,497 MJI 55s 3,497 MJI 58s

Register (6) CE 24,939,222 181h 11,235 3m56s 11,235 MJI 3m37s 6,987 MJI 2m32s 6,987 MJI 2m34s

Multicast (5) OK 7,279 1m34s 7,945 1m46s 2,674
MJI 38s (38s)

6,607
MJI 1m29s (1m30s)

2178
MJI 37s (37s)

Mod. 1m2s (1m47s) Mod. 2m7s (2m7s) Mod. 59s (1m46s)

Multicast (6) OK 102,058 28m13s 183,265 44m45s 24,382
MJI 6m12s

94,186
MJI 26m26s

12,494
MJI 3m34s

Mod. 7m8s (11m2s) Mod. 29m32s (31m15s) Mod. 5m4s (9m32)

Multicast (6) CE 7,543 3m32s 4,890 2m8s 4,890 MJI 1m57s 2,139 MJI 1m4s 2,139 MJI 1m47s

A. Target Protocols and Properties

We selected the following representative protocols:

Paxos [17], a widely-used [24], [26] crash-tolerant consensus

protocol, the Byzantine-tolerant Echo Multicast protocol [20],

and a crash-tolerant regular storage protocol in the style

of [1]. We assume meaningful finite protocol instances where

at least one process fault is tolerated.

We consider the main safety properties of these protocols,

namely Paxos must not return different values (consensus),

Echo Multicast sends the same value to each recipient (agree-

ment), and a read operation returns a value not older than the

one written by the latest preceding write operation (regularity).

Each of these properties can be expressed by invariants, a

class of properties preserved by LPOR. For evaluating the

bug-finding capabilities of LPOR, we inject faults into both

the protocols and the properties.

A detailed description of these specifications can be found

in Appendix VI.

B. Comparison with Dynamic POR

We compare LPOR with dynamic POR (DPOR) [10]. We

explain how DPOR differs from static POR (SPOR) in Section

VII. In general, the benefit of DPOR is that it needs to be

less conservative about the selection of paths that are explored

in the reduced search. However, our experiments show the

efficiency of LPOR over DPOR, improving on the reductions

of a message-passing DPOR implementation.

Like any SPOR algorithm, LPOR can be soundly combined

with DPOR for further reduction [10]. This must respect the

restrictions imposed by DPOR, however. For example, DPOR

assumes the absence of cycles in the state space. We only

consider protocol examples with acyclic state spaces for a fair

comparison.

We compare LPOR with the original DPOR algorithm by

Flanagan and Godefroid [10] because this preserves (with the

visibility constraint) the properties of our example protocols.

For example, the DPOR variant in [21] only guarantees that

every transition executed in the unreduced search is also

executed in the reduced one.

In order to preserve invariants, Java-LPOR prevents non-

trivial stubborn sets from including visible transitions [23], [8].

This constraint can also be implemented in DPOR such that if

a visible transition is executed in a state during the search,

then all enabled transitions in this state will be executed.

For comparing LPOR with DPOR, we use the Basset model

checker [18], which implements an adaptation of Flanagan and

Godefroid’s DPOR algorithm for actor programs. The actor

semantics used in Basset is similar to our model of message-

passing except that quorum transitions are not supported.

Therefore, we extended Basset’s DPOR implementation with

quorum transitions: when a process executes a quorum tran-

sition, the vector clock of the process will be updated to be

the maximum of (1) its current value and (2) the values of the

vector clocks of the senders of the messages, where the values

correspond to the time of sending the message. In Basset this

computation involves one sender as every transition consumes

a single message.

C. Experimental Setup

We run our experiments in a DETERlab testbed [29] on

2GHz Xeon machines. We compare LPOR with the unreduced

models and DPOR, our extension of Basset’s DPOR imple-

mentation as explained above. We integrated both this DPOR

algorithm and LPOR (as described in Section V) within the

MP-Basset model checker [5]. The source of this version of

MP-Basset is available online [28]. For fair comparison, both

of our POR implementations use the same heuristic for initial

transitions. We refer the reader to Appendix VI for details of

this heuristic. DPOR is run as stateless search because DPOR

can be unsound if state comparison is used [10].

We use three versions of the LPOR algorithm. First, we

run the full-fledged algorithm but switch off state comparison

(stateless). Second, we run a stateful search but switch off

the NET optimization (LPOR only). Third, we run stateful

search and LPOR with (state-conditional) NET support (LPOR

+ NET). We also count the number of visited states in the

stateless searches, for both LPOR and DPOR.

D. Our Reduction Results

The results of our experiments are shown in Table I. We

write OK if the model checker finds no bug, otherwise (in case

of faulty protocols or wrong specifications) a counterexample

(CE) is returned. F-Paxos and F-Paxos2 are two faulty versions

of Paxos. We used wrong specifications for the other protocols.

The best result for each protocol instance is written in bold.

In buggy instances the search is stopped after finding the first

bug, i.e., the search is non-exhaustive. Therefore, the number

of visited states depends on the order in which transitions are

executed in a state. This schedule can be different in DPOR

and LPOR.

We observe that:

• The POR-based search finds bugs faster than unreduced

search and there is no clear winner between DPOR and

LPOR.

• LPOR is highly efficient as shown by the exhaustive

search results (OK) reducing the number of states by up

to to 94% and search time by up to 90% – see register

example.

• Although the additional online checks in the NET op-

timization slow down LPOR (as discussed in Section

III-B), e.g., 74 states/sec versus 59 states/sec for exhaus-

tive Multicast (5), the additional state reduction can add

up to reducing the total model checking time. Indeed,

the NET optimization can be very efficient by achieving

additional space and time reductions of up to 87% – see

Multicast (6) exhaustive search result.

• LPOR outperforms DPOR in all exhaustive search experi-

ments, even in stateless search where the benefit of LPOR

is not biased by the stateful optimization. In addition,

LPOR proves to be more time efficient than DPOR, i.e.,

the time overhead of LPOR is smaller. For example, the

stateless exhaustive runs of Register (5) visit the same

number of states but LPOR is faster.

E. Execution Time Issues

In this Section, we discuss the trade-offs affecting the time

overhead of LPOR as implemented within MP-Basset.

MP-Basset is an extension of Basset [18], a model checker

for actor programs. Basset, in turn, builds on Java Pathfinder

(JPF) [27], a stateful model checker for Java. Similarly to

Basset, MP-Basset is a Java application run by JPF. As such,

it can run Java code at two levels [27]: first, in the modeled

layer, which is a JPF-simulated JVM; second, in the host

JVM (where JPF also runs), which is accessible from the

modeled layer via an interface called Model Java Interface

(MJI). Roughly speaking, JPF explores the state space of the

application run in the modeled layer. Due to the indirection

of the modeled layer, execution in this layer is slower than in

the host JVM. The modeled application can always execute

code in the host JVM using MJI. However, as there is a speed

penalty of using MJI, time efficient JPF applications should

use MJI with care. One source of this time overhead is that MJI

converts parameters of MJI method calls between the modeled

and the host JVM’s object model.

To explore this trade-off, we created and compared two

architectures, one where the LPOR algorithm runs in the

modeled layer and another one where it runs in the host JVM.

In our experiments, the MJI-based implementation was faster.

This meets our expectations for (state-unconditional) “LPOR

only” because no state information is passed (and thus con-

verted) to Java-LPOR, whereas in (state-conditional) “LPOR

+ NET”, the NET relation is a function of a small fraction

of the current state (see Section IV-B). For our message-

passing instantiation of LPOR, the MJI overhead turns out

to be more time efficient than executing the LPOR algorithm

in the modeled layer even in the “LPOR + NET” case. This

does not necessarily generalize. In other LPOR applications,

particularly where the entire state has to be converted for MJI,

the execution time penalties may trade off differently.

Table I shows the model checking time of both implemen-

tations (MJI and Mod. stands for the implementation in the

modeled and the host JVM layer, respectively). For space

reasons, we omit the modeled layer times for the CE results

as they show similar trends as for OK.

We also measure the benefit of using pre-computation.

The times where forward enable sets are computed on-line

(no pre-computation) are written in parentheses. Otherwise,

the times shown include the time of pre-computation. The

benefit of pre-computation is significant in the modeled layer

implementation. We observe a higher relative gain of using

pre-computation in NET optimized LPOR. The reason is that

forward enable sets containing non-empty en-fields (in the

NET optimized case) tend to be larger, thus, their computation

takes longer. The reason why the MJI implementation does

not greatly benefit from pre-computation for our particular

protocol examples is two-fold: first, lines 22-26 in LPOR

(Algorithm 2) are executed in a relative small number of states;

second, the body of the do-while loop in the forward enable set

computation (Algorithm 1) is executed only a few (1-2) times

during an average invocation of FwdEnableSet. We leave the

investigation of other protocols, which could very well show

a completely different profile, for future work.

VII. RELATED WORK

The basic structure of the LPOR algorithm is similar to

Godefroid’s stubborn (and persistent) set algorithms [11],

which start with a transition and keep adding new transitions

using the dependency and can enabling relations until the

current set of transitions is not stubborn. An application of

these algorithms to new languages is only possible after a

translation into a specific language used in [11] that specifies

processes communicating via shared objects. Transitions in

this language are assumed to be deterministic. Furthermore,

the algorithms in [11] do not support pre-computation. The

ample set algorithms in [8], [14], [13] also restrict to process-

based systems and deterministic transitions. Moreover, they

conservatively assume that a non-trivial ample set consists of

all enabled transitions of a particular process.

Promela is a general language with explicit support for

multi-process systems and message-passing. SPIN is a widely-

used model checker for specifications written in Promela [13].

SPIN supports a specific form of POR, which is based on

the observation that transitions t1 and t2 are independent if

they are from different processes and t1 is the only transition

writing to (or reading from) a FIFO channel (exclusive write

or read, respectively) [14], [13]. Such interferences can be

easily expressed in LPOR by excluding (t1, t2) and (t2, t1)
from the dependency relation. We note that in the description

of [14], t1 and t2 are considered “independent” only in states

where the channel is non-empty (non-full). This is because

their definition of dependency includes that a transition can

enable another transition. In fact, t1 can enable read (send)

transitions but t1 and t2 are always (state-unconditionally)

independent in the sense of Definition 2.

It is possible to give a graph theoretic implementation of

LPOR as proposed in [23]. In this approach, the vertices of the

graph are transitions and t is connected to t1 if t1 needs to be

added to the stubborn set on behalf of t. Then, certain vertices

of this graph, e.g., included in properly selected strongly

connected components, correspond to stubborn sets.

Dynamic POR (DPOR) [10] is a POR implementation

which computes a persistent set in some state s gradually while

the successors of s are explored. In this way the persistent set

algorithm can learn about interfering transitions and needs not

to guess them as in static POR. In other words, DPOR explores

future paths instead of guessing them. However, DPOR also

makes static assumptions about co-enabled dependent transi-

tions. Furthermore, DPOR is inherently a depth-first search, it

needs to know the sequence of transitions in the current path

(which is not straightforward in parallel model checking [22])

and can be unsound with stateful model checking [25].

In recent work [5], we propose a heuristic to translate from

one transition system to another to maximize the reduction of

POR and apply it to message-passing systems. This translation

is orthogonal to LPOR, which requires a transition system at

its input.

The input relations of LPOR can be partly or entirely

derived automatically using a SAT solver, an approach similar

to [7]. Moreover, SAT-based bounded model checking can be

used to compute more accurate enabling sequences than our

forward enable sets. For example, given transitions t1, t2, t3,

it is possible that t1 can enable t2, and t2 can enable t3, but

t2 cannot enable t3 if t2 was enabled by t1.

VIII. CONCLUSIONS

We have proposed LPOR, a framework for easy-to-use,

flexible, and efficient POR implementations. While existing

POR implementations trade flexibility for ease-of-use and

efficiency, e.g., SPIN’s POR limits to exclusive write/read

FIFOs or DPOR prohibits cycles, the strength of LPOR is that

it provides these features at the same time. In ongoing work,

we study if state-conditional can-enabling and dependency

relations can improve on LPOR’s reductions. For example, a

state-conditional can-enabling relation can be used to rule out

transitions t1 in line 22 of Algorithm 2 that cannot enable any

transition in the current state. Another possible extension is to

add symmetry reduction to LPOR. Although PO and symmetry

reductions are compatible in theory [9], no implementation of

their combination is available nor its efficiency was tested on

real examples.

Acknowledgement. We thank Gerard Holzmann for his in-

sights of the POR theory as implemented by SPIN to enable

an objective comparison across LPOR and SPIN.

REFERENCES

[1] H. Attiya, A. Bar-Noy, D. Dolev. Sharing Memory Robustly in Message-
Passing Systems. J. ACM, 42(1):124–142, 1995.

[2] H. Attiya, J. Welch. Distributed Computing. John Wiley and Sons, 2004.
[3] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, S. Rajamani. Partial-Order

Reduction in Symbolic State-Space Exploration. FMSD, 18(2): 97–116,
2001.

[4] P. Bokor, M. Serafini, N. Suri. On Efficient Models for Model Checking
Message-Passing Distributed Protocols. FORTE, pp. 216–223, 2010.

[5] P. Bokor, J. Kinder, M. Serafini, N. Suri. Efficient Model Checking of
Fault-Tolerant Distributed Protocols. DSN-DCCS, pp. 73–84, 2011.

[6] P. Bokor, J. Kinder, M. Serafini, N. Suri. Supporting Domain-
Specific State Space Reductions through Local Partial-Order Re-
duction. Technical Report, Technische Universität Darmstadt,
TR-TUD-DEEDS-07-01-2011, 2011. (http://www.deeds.informatik.tu-
darmstadt.de/peter/papers/LPOR.pdf)

[7] R. Bhattacharya, S. German, G. Gopalakrishnan. Exploiting Symmetry
and Transactions for Partial Order Reduction of Rule Based Specifica-
tions. SPIN, pp. 252-270, 2006.

[8] E. Clarke, O. Grumberg, D. Peled. Model Checking. MIT Press, 2000.
[9] E. Emerson, S. Jha, D. Peled. Combining Partial Order and Symmetry

Reductions. TACAS, pp. 19–34, 1997.
[10] C. Flanagan, P. Godefroid. Dynamic Partial-Order Reduction for Model

Checking Software. POPL, pp. 110–121, 2005.
[11] P. Godefroid. Partial-Order Methods for the Verification of Concurrent

Systems: An Approach to the State-Explosion Problem. Springer, 1996.
[12] G. Gueta, C. Flanagan, E. Yahav, M. Sagiv. Cartesian Partial-Order

Reduction. SPIN, pp. 95–112, 2007.
[13] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2004.
[14] G. J. Holzmann, D. Peled. An Improvement in Formal Verification.

FORTE, pp. 197–211, 1994.
[15] V. Kahlon, C. Wang, A. Gupta. Monotonic Partial Order Reduction: An

Optimal Symbolic Partial Order Reduction Technique. CAV, pp. 398–413,
2009.

[16] L. M. Kristensen, K. Schmidt, A. Valmari. Question-guided Stubborn
Sets for State Properties. FMSD, 29(3):215-251, 2006.

[17] L. Lamport. The Part-time Parliament. ACM Trans. Comp. Sys.,
16(2):133–169, 1998.

[18] S. Lauterburg, M. Dotta, D. Marinov, G. Agha. A Framework for State-
Space Exploration of Java-Based Actor Programs. ASE, pp. 468–479,
2009.

[19] R. Nalumasu, G. Gopalakrishnan. A New Partial Order Reduction
Algorithm for Concurrent System Verification. CHDL, pp. 305-314, 1997.

[20] M. K. Reiter. Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart. CCS, pp. 68–80, 1994.

[21] K. Sen, G. Agha. Automated Systematic Testing of Open Distributed
Programs. FASE, pp. 339–356, 2006.

[22] U. Stern, D.L. Dill. Parallelizing the Murϕ Verifier. FMSD, 18(2):
117–129, 2001.

[23] A. Valmari. The State Explosion Problem. Petri Nets I: Basic Models,
pp. 429-528, 1998.

[24] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, L. Zhou. MODIST: Transparent MC of Unmodified Distributed
Systems. NSDI, pp. 213–228, 2009.

[25] Y. Yang, X. Chen, G. Gopalakrishnan, R.M. Kirby. Efficient Stateful
Dynamic Partial Order Reduction. SPIN, pp. 288–305, 2008.

[26] http://hadoop.apache.org/zookeeper/
[27] http://babelfish.arc.nasa.gov/trac/jpf
[28] http://www.deeds.informatik.tu-darmstadt.de/peter/mp-basset/
[29] http://www.isi.deterlab.net/

