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Abstract

Byzantine-Fault-Tolerant (BFT) state machine replica-
tion is an appealing technique to tolerate arbitrary fail-
ures. However, Byzantine agreement incurs a fundamen-
tal trade-off between being fast (i.e. optimal latency) and
achieving optimal resilience (i.e. 2f + b+ 1 replicas, where
f is the bound on failures and b the bound on Byzantine
failures [10]). Achieving fast Byzantine replication despite
f failures requires at least f + b — 2 additional repli-
cas [11, 7, 9]. In this paper we show, maybe surprisingly,
that fast Byzantine agreement despite f failures is practi-
cally attainable using only b — 1 additional replicas, which
is independent of the number of crashes tolerated. This
makes our approach particularly appealing for systems that
must tolerate many crashes (large f) and few Byzantine
Saults (small b). The core principle underlying our approach
is to have the correct replicas agree on a quorum of respon-
sive replicas before agreeing on requests. This is key to
circumventing the resilience lower bound of fast Byzantine
agreement [7].
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1 Introduction

Byzantine Fault Tolerant (BFT) state machine replica-
tion [12] has the potential to become a generic solution
for reliable distributed computing. BFT replication can be
used to make any deterministic server application tolerant
to worst-case failures in eventually synchronous systems.
However, the potential for generality can be fully exploited
only if the performance overhead and replication costs of
BFT are minimized. This motivates much ongoing work
aimed at making BFT replication more efficient, from the
PBFT protocol [2], to guorum-based protocols [1, 6], to fast
BFT protocols exhibiting the optimal number of agreement
steps [11, 7, 9]. Table 1 compares the properties of rel-
evant primary-based BFT replication protocols and shows
how practical BFT replication [2] has evolved to more ad-

vanced solutions based on speculation like Zyzzyva [9].

Speculative BFT protocols [9] and other fast Byzantine
agreement protocols such as FAB [11] and DGV [7] im-
prove the performance of BFT replication by trading op-
timal resilience for optimal performance (in terms of la-
tency and throughput) in presence of unresponsive replicas.
Replicas can be unresponsive if they are faulty or simply
slow relative to other replicas due to heavier workload or
poorer network connection. Fast BFT protocols can deliver
areply to the client with optimal latency (three communica-
tion steps if the client is not a replica). In order to attain op-
timal latency in presence of f unresponsive replicas while
tolerating b = f Byzantine faults, these protocols need up to
2 f additional replicas compared to the minimum of 3f + 1.

Lower bounds [11, 7] show that if only 3 f+1 replicas are
used, no protocol can be fast in the presence of even a single
unresponsive replica. The Zyzzyva protocol, for example,
exhibits optimal resilience [10] as it requires 3 f + 1 repli-
cas to tolerate f Byzantine faults. However, Zyzzyva re-
quires all replicas to respond to clients fast enough in order
to reach fast agreement and leverage speculation. If some
replica is slower or faulty, clients need to face a dilemma:
either they wait for the missing responses, which may never
arrive or may be indefinitely slow, or require replicas to ex-
ecute a slower explicit agreement. This dilemma is elimi-
nated in the Zyzzyva5 protocol by raising replication costs
from 3f 41 to 5f + 1, thus sacrificing minimum replication
costs in favor of better performance. Note that quorum-
based protocols such as Q/U [1] and HQ [6] do not offer
better performance than Zyzzyva [9, 16].

Contributions In this paper we propose Scrooge, a new
BFT replication protocol which improves on the resilience
of fast Byzantine agreement in presence of unresponsive
replicas. Scrooge requires only N = 2f + 2b replicas to
tolerate f > O faults, out of which b > 0 are Byzantine,
and it is fast despite f unresponsive replicas. Thisis f — 1
less replicas than any existing fast Byzantine replication al-
gorithm [11, 7].

m [t is important to note that Scrooge does not contra-
dict the resilience lower bounds of fast byzantine agree-



ment [11, 7]. Scrooge attains fast Byzantine agreement only
under the additional condition that a set of N — f respon-
sive replicas is known in advance. However, this additional
requirement can be implemented and hence has little prac-
tical impact. Scrooge, in fact, ensures that under the same
assumptions required for speculation (i.e. primary is fault-
free, clients are honest and communication is timely) the
set of responsive replicas eventually is identified. Thus, fast
agreement eventually is provided for all requests.

m All algorithms in Table 1 preserve safety in worst-
case scenarios but are designed to achieve high performance
only in more common scenarios with fault-free or unrespon-
sive replicas and clients. Achieving liveness in presence of
worst-case attacks requires using different techniques, such
as using specific network topologies, which are mostly or-
thogonal to our work and which go beyond the scope of this
and the other cited papers [4]. However we explicitly con-
sider the use of signatures for client requests, as indicated
in [4], because this impacts the design of our protocol.

m We designed Scrooge to use few replicas when b is
small. In fact, Scrooge requires only b — 1 replicas more
than the optimal number of 2 f +b+1 [10]. Unlike any other
fast Byzantine agreement protocol, the replication overhead
incurred by Scrooge does not depend on f. This allows
Scrooge to scale with the number of unresponsive replicas
tolerated. Moreover, when a single Byzantine fault needs to
be tolerated, Scrooge achieves optimal resilience (2f + 2)
and requires only one additional replica compared to proto-
cols tolerating only crashes.

m We experimentally and analytically evaluated Scrooge.
Scrooge performs as well as state-of-the-art fast BFT proto-
cols like Zyzzyva if all replicas are responsive. In scenarios
with at least one unresponsive replica we found that:

e The peak throughput advantage of Scrooge is more
than 1.3 over Zyzzyva. Scrooge also has lower latency
with high load.

e Scrooge reduces latency with low load by at least 20%
and up to 98% compared to Zyzzyva.

e Scrooge performs as well as Zyzzyva5, which uses f+
1 more replicas than Scrooge (with f = b).

e As the number of tolerated faults increases, the over-
head of Scrooge degrades more slowly than in other
protocols using equal or lower redundancy.

1.1 First technique: Replier quorums

Scrooge uses two novel techniques, replier quorums and
message histories, to reduce replication costs. The first
technique consists of having replicas agree on a set of repli-
cas, termed replier quorum, whose members are the only
ones responsible for sending replies to clients in normal
runs. A distinguished replica, called the primary, sends

Replication Fast(x) w. Fast(») w.
costs (min. no unrespon- | f unrespon-
2f + b+ 1[10]) sive replica sive replicas
PBFT [2] 3f+1 NO NO
Zyzzyva [9] 3f+1 YES NO
Zyzzyva$ [9] 5f+1 YES YES
DGV [7] 3f+2b— 1) YES YES
[ Scrooge | 2f +2b [ YES [ YES |

Table 1: Comparison of primary-based BFT replication pro-
tocols that tolerate f failures, including b Byzantine ones.
The first three protocols assume f = b. (x) A protocol is fast
if it has minimal best case latency to solve consensus [11, 7].
If the primary is faulty or the clients are Byzantine none of
these protocols is fast. Upon backup failure events, Scrooge
is fast after a bounded time whereas ZyzzyvaS5 is always fast.
(>) Cost for f > 1 in order to be fast with f unresponsive
replicas. For f = 1 the corresponding cost is 2f + 2b + 1
replicas.

messages to the other replicas that dictate the order of ex-
ecution of requests. Scrooge uses speculation so replicas
directly reply to the client without reaching agreement on
the execution order first (Fig. 1.a). This allows clients to
immediately deliver a reply if all the repliers are respon-
sive and correct. If a replier becomes unresponsive or starts
behaving incorrectly, this is indicated by clients to the repli-
cas, which then execute a reconfiguration to a new replier
quorum excluding the suspected replica.

During reconfigurations, explicit agreement is per-
formed by the replicas (Fig. 1.b). The agreed-upon value
contains two types of information: the execution order of
client requests and the new replier quorum. Agreeing on
the order of requests ensures that all client requests can
complete even in presence of faulty or unresponsive repli-
ers. Agreeing on the new replier quorum allows future re-
quests to be efficiently completed using speculation. Cou-
pling these agreements reduces the overhead incurred by re-
configuration. The goal of the first explicit agreement in
Fig. 1.b is just completing the ongoing request from Client
1. When the request of Client j is received, the primary has
a chance to propose a new replier quorum and let all replicas
explicitly agree on it. Speculation is reestablished as soon
as this agreement is reached.

Scrooge requires clients to participate in the selection of
repliers. Giving more responsibility to clients is common
in many BFT replication protocols, such as Q/U, HQ and
Zyzzyva. This is reasonable as clients are ultimately en-
trusted not to corrupt the state of the replicated state ma-
chine with their requests. Scrooge protects the system from
Byzantine clients and ensures that they can not make replica
states diverge. However, Byzantine clients can reduce the
performance of the system by forcing it to perform frequent
reconfigurations and to use the communication pattern of
PBFT (like in the request of Client j in Fig. 1.b), which



anyway allows achieving good performance, instead of us-
ing speculation (like in Fig. 1.a). This kind of client attacks
can be easily addressed by simple heuristics, as for exam-
ple by bounding the number of accusations a client can send
in a given unit of time. This reliance on the client to indi-
cate suspected replicas results from the use of speculation.
Replicas can not observe if other replicas prevent fast agree-
ment by not sending correct speculative replies.

Reconfigurations are avoided in existing speculative pro-
tocols such as ZyzzyvaS by using more replicas than
Scrooge. Replier quorums allow reducing the replication
costs to 4f 4 1 replicas when f = b.

1.2 Second technique: Message histories

The second technique leverages the Message Authenti-
cation Codes (MACs) used in BFT replication protocols to
implement authenticated channels and to detect forged and
corrupted messages. The sender of a message generates
an authenticator, which is a vector of MACs with one en-
try for each other receiver, and attaches it to the message
before sending it. In current primary-based protocols such
as [2, 9] replicas store the history of operations dictated by
the primary but discard the authenticator after the authen-
ticity of the message has been verified. In Scrooge, replicas
store the entire messages (also the authenticators), which
are therefore called message histories. Message histories
further reduce the replication cost from 4 f 4+ 1 to 4 f (again
with f = b).

Paper structure. In Section 2 we introduce the system
and fault models. The Scrooge protocol is described in Sec-
tion 3. Section 4 describes the view change algorithm of
Scrooge, which leverages our two novel techniques. The
experimental comparison of Scrooge with state-of-the-art
fast BFT state machine replication protocols is reported in
Section 5. Related work is discussed in Section 6.

2 System and Fault Model

The system is composed of a finite set of clients and
replicas. We assume that at most f replicas can be faulty,
out of which at most b can be Byzantine with 0 < b < f
while the others can only crash. The system consists of at
least N = 2f + 2b replicas. Any number of clients can be
Byzantine. Clients and replicas are connected via an asyn-
chronous network without known upper bounds on the com-
munication delays. The network can drop, corrupt or dupli-
cate messages or deliver them out of order. We say that the
system is in a timely period when all messages sent among
correct nodes are delivered within a bounded delay.

We assume the availability of computationally secure
cryptographic primitives. Namely, we assume the availabil-
ity of symmetric key cryptography to calculate MACs, and
public key cryptography to sign messages. If message m
is sent by process ¢ to process j and is authenticated using

[ Name [ Description [ Type
v current view timestamp
RQ replier quorum set of pids
n current seq. number timestamp
mh message history array of (req., RQ, auth.)

h history digests array of digests
aw agreed watermark timestamp
cw commit watermark timestamp
SL suspect list set of f pids
v new view timestamp
ih initial history array of (m, RQ, auth.)
E view establishment setof N — f signed

certificate EST-VIEW messages

Table 2: Global Variables of a Replica

simple MACs, this is denoted as (m),, ;. In case m is sent
to all replicas by process ¢, an authenticator consisting of a
vector of MACs with one entry per replica is sent with m
and denoted as (m),,. If m is signed by ¢ using its private
key we denote it as (m),,. We also assume the availability
of a collision-resistant hash function H to compute message
digests ensuring that it is impossible, given H (m), to find a
message m’ # m such that H(m) = H(m').

3 The Scrooge Protocol

Scrooge replicates deterministic services, modeled as
state machines, over multiple servers. Clients use Scrooge
to interact with the replicated servers as if they were inter-
acting with a single reliable server.

Throughout the protocol description we reason about its
correctness. Complete correctness proofs can be found in
our technical report [13]. Beyond the classic safety and live-
ness properties of BFT replication, we prove that in Scrooge
clients eventually complete all their requests from specula-
tive replies if the usual conditions for speculation are sat-
isfied (i.e. the primary is fault-free, the clients are non-
Byzantine and the system is timely).

We ease the discussion by presenting a simplified version
of Scrooge which assumes that replicas process unbounded
histories. A complete description of the full Scrooge pro-
tocol with garbage collection, together with full correctness
proofs, can be found in [13].

3.1 Normal Execution

In normal executions where the system is timely, the pri-
mary is fault-free and the replier quorum is agreed by all
replicas and contains only fault-free replicas, Scrooge be-
haves as illustrated in Fig. 1.a and Alg. 1.! Table 2 summa-
rizes the local variables used by the replicas. We informally
describe the predicates and the helper procedures used in the
pseudocode and refer to [13] for a more formal definition.
Only MAC:s are used for normal runs and reconfigurations.

1Upon receiving a message, processes discard them if they are not well-
formed, that is, signatures, MACs, message digests or certificates are not
consistent with their definitions. We ignore such non well-formed mes-
sages in the pseudocode.
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Figure 1: Communication patterns: (a) with speculation, during normal periods; (b) with explicit agreement, during transient recon-
figuration periods where two client requests are processed. Repliers are indicated with a thicker line.

Algorithm 1: Scrooge - Normal Execution

1.1 upon client invokes operation o

1.2 t—t+1; SL — L,
1.3 send m = (REQ, o, t, ¢, SL) o, to the primary;
14 start timer;
1.5
1.6 upon primary p(v) receives request m from client m.c or a replica
1.7 if not IN-HISTORY (m, mh) then
1.8 n«—n-+1; d«— H(m); RQp, < replicas € SL;
1.9 send ((ORD-REQ, v, n, d, RQp>up , m) to all replicas;
1.10 else if nor COMMITTED(m, mh, cw) then
1.11 update(m.SL);
1.12 agree(m);
1.13 else reply-cache(m.c);
1.14
1.15 upon replica i receives ordered request orq from primary p(v)
1.16 ifi = p(v) or (orq.v = vand orq.n = n + 1 and
p(v) € orq.RQyp) and not IN-HISTORY (orq.m, mh) then
1.17 n «— n+1; h[n] « H(h[n — 1], mh[n]);
1.18 mh[n] < (orqg.m,orq.RQp,orq.pip);
1.19 r «— execute(orq.m.o);
1.20 if SPEC-RUN(%, orq.m, orq.RQp, RQ) then
1.21 if i € RQ then
1.22 send (SPEC-REP, v, n, h[n], RQ, orq.m.c,
orq.m.t, 1, 7;>P'p,c to client orq.m.c;
1.23 else
1.24 agree(orq.m);
1.25 if RQ # orq.RQp then RQ — L;
1.26 if AGREEMENT-STARTED(%, n, v) then agree(orq.m);
1.27
1.28 upon client receives speculative reply sp from replica sp.i
1.29 if IRQ : received N — f matching speculative replies sp to m with
sp.RQ = RQ from all replicas in RQ then
1.30 deliver (o, t, sp.r); stop timer ;
1.31

Scrooge runs proceed through a sequence of views. In
each view v, one replica, which is called the primary and
whose ID is p(v) = v mod N, is given the role of assigning
a total execution order to each request before executing it.
The other replicas, called backups, execute requests in the
order indicated by the primary.

Clients start the protocol for an operation o with local
timestamp ¢ by sending a signed request message REQ to
the primary. Clients then start a timer and wait for specula-
tive replies (Lines 1.1 — 1.4). When the primary receives a
request for the first time (Lines 1.6 — 1.9) it assigns it a se-
quence number and sends an order request message ORD-
REQ to mandate the same assignment to all backups. The

primary also stores the request in its message history to-
gether with the current replier quorum R(),, and the authen-
ticator (1, of the ORD-REQ message.

When a replica receives order requests from the primary
of the current view (Lines 1.15 — 1.19), it checks that its
view number is the current one, that it contains the next se-
quence number not yet associated with a request in the mes-
sage history (predicate IN-HISTORY), and that the pri-
mary has included itself in the replier quorum. If all these
checks are positive, the request is executed and the fields of
the ORD-REQ message are added to the message history.

Speculative runs where the pattern of Fig. 1.a is executed
are the common-case runs (Lines 1.20 — 1.22). A replica
checks the predicate SPEC-RUN to distinguish speculative
runs. The predicate is true unless (i) a client could not com-
plete the request out of speculative replies and has resent its
request to all replicas, including backups, or (ii) the primary
has proposed a new replier quorum which has not yet been
agreed upon. In speculative runs, replicas send a speculative
reply to the client if it is a replier. Beyond the reply r and the
view number v and the sequence number n associated to the
client request, speculative replies contain the digest of the
current history h[n] and the replier quorum R(Q. The for-
mer allows clients to verify that the senders of speculative
replies have a consistent history; the latter to identify the
replicas in the current replier quorum. If a client receives
N — f matching speculative replies from R(), it delivers
the reply (Lines 1.28 — 1.30).

3.2 Reconfiguration

If a replica in the replier quorum fails, the client can not
complete requests out of speculative replies. The replier
quorum is then reconfigured by identifying and eliminat-
ing faulty repliers to re-establish the communication pattern
of Fig. 1.a. Replicas execute a full three-phase agreement
similar to PBFT [2] (see [13] for the full pseudocode). An
example of reconfiguration involving two client requests is
given in Fig. 1.b.



3.2.1 Completion of client requests

When clients cannot deliver speculative replies before the
timer expires, they double the timer, indicate the IDs of the
repliers which have failed to respond and require replicas to
explicitly agree on a common message history. Similar to
Client ¢ in Fig. 1.b, they do this by simply resending their
requests m, together with the set S'L of suspect replicas, to
all replicas.

When the primary receives a request which is already
in its message history, it checks the predicate COMMIT-
TED, which is true when a three-phase agreement on the
order of the request has been already completed. If not, it
adds the suspect list provided by the client into the list of the
f most-recently suspected servers SL and starts agreement
(Lines 1.10 — 1.12). Backup similarly start agreement be-
cause receiving the client request invalidates SPEC-RUN.
However, they need to receive the corresponding ordered
request from the primary first (Lines 1.23 — 1.26). A replica
1 also starts an agreement phase whenever another replica
previously sent it an agreement message (Line 1.26).

Replicas then execute the remaining two phases of agree-
ment, agree and commit, to converge to a consistent history
and send stable replies to the client. In each phase replicas
send an agree or a commit message and wait for N — f — 1
matching messages from the other replicas before complet-
ing the phase. The agree and commit watermarks aw and
cw mark the end of the history prefix which has been re-
spectively agreed and committed. Like in PBFT, all cor-
rect replicas completing the agreement phase for sequence
number n’ have the same message history prefix up to n’.
When correct replicas complete the commit phase for n/,
they know that a sufficient number of correct replicas have
completed agreement on the history prefix up to n’ to ensure
that the prefix will be recovered during view change. Repli-
cas thus sends stable reply messages to the client. Stable
replies are different from speculative replies because they
indicate that the history prefix up to the replied request can
be recovered. Clients can deliver after receiving a stable
reply from at least one correct replica, that is, after receiv-
ing matching stable replies from any set of b + 1 replicas.
Replicas cache the replies to committed requests to respond
to clients re-sending their requests (Line 1.13).

3.2.2 Agreement on a new replier quorum

The classic three-phases agreement is also executed for all
subsequent requests until a new replier quorum is agreed,
as in case of the request of Client j in Fig. 1.b. This
time agreement is needed to reconfigure to the new replier
quorum R(@), calculated from the new suspect list SL in
Line 1.8. The primary proposes R, along with the next
request which is ordered. Proposing a new replier quorum
invalidates the SPEC-RUN predicate for all backups and
lets them start agreement (Lines 1.23 — 1.25). Replicas reg-

ister ongoing reconfigurations by setting R() to L until a
reconfiguration is completed. They then start the succes-
sive two phases of agreement. Explicit agreement lets repli-
cas converge not only on a common history but also on a
new replier quorum. When a replica commits, it sets R() to
the new replier quorum proposed by the primary so SPEC-
RUN holds again for future requests and speculation is re-
established. The commit on the new replier quorum ensures
that it will be recovered if view changes take place. When
a replier quorum is updated for sequence number n, correct
replicas also send speculative replies with the new replier
quorum in order not to be suspected by other clients waiting
for speculative replies for sequence numbers greater than n.

4 Scrooge View Change

If correct backups receive requests from the clients and
see that the system is not able to commit them before the
timer expires, they start a view change to replace the current
primary. There are two key differences making view change
in Scrooge harder than in existing protocols. In contrast to
PBFT, we can only expect replicas to have explicitly agreed
on a prefix of the request history completed by clients. Also,
different from existing fast protocols allowing speculation
in presence of unresponsive replicas, Scrooge uses a lower
number of replicas. We developed a novel view change pro-
tocol (see Alg. 2) to achieve these challenging goals. As
customary in BFT protocols, replicas use signed messages
during view change.

4.1 Communication Pattern

View change to a new view v’ tries to build an initial
history ih for v/, which is then adopted as new message
history when v’ is started. When a replica initiates view
change from the current view v to view v/, it stops process-
ing requests, starts a timer, and sends a view change mes-
sage VIEW-CHANGE to all replicas (see Fig. 2 point a and
Lines 2.1 — 2.5). A view change can also be initiated when
a replica receives b + 1 view change message for a newer
view (Lines 2.15 —2.16).

A view change message contains the new view v’ that
the replica wants to establish, the old view v, its message
history mh, the view establishment certificate E and the
agreement watermark aw. The message history mh con-
tains as prefix the initial history ¢h,, of v, which was stored
at the end of the view change to view v. By induction on
the correctness of the view change subprotocol for a given
view, th, contains every operation completed by any client
in the views prior to v. The view establishment certificate
E contains the EST-VIEW messages received at the end of
the view change to view v and proves the correctness of
ih,. The remaining suffix of mhA contains the ORD-REQ
messages received by ¢ from the primary of view v. These
requests need to be recovered by the view change if they
have been observed by any client.



Algorithm 2: Scrooge - View change

2.1 procedure view-change(nv)

2.2 stop executing request processing;
2.3 v — nv;
2.4 send (VIEW-CHANGE, v', v, mh, aw, E, i), to all replicas;
2.5 start timer;
2.6
2.7 upon replica i receives view change message vc from replica vc.i
2.8 if ve.v’ > v and not yet received a view change message vc for view
nv = ve.v’ from ve.i then
2.9 k<—n'+1:Vev€vc.E,cv.n:n';
2.10 while mh[k] # L do
211 res[k] « verify(vc.v, k, ve.mh[k]);
2.12 k—k+1;
213 d — H(vc); j <« vec.i; vj «— vew;
2.14 send (CHECK, j, v;, d, res, i)ai to p(ve.v’);
2.15 if received b + 1 vc msgs with ve.v” > v’ then
2.16 view-change(ve.v’);
2.17 ifi = p(v') and ve.v’ = v’ and recover-prim() then
2.18 send (NEW-VIEW, v’, VC, CH, i), to all replicas;
2.19
2.20 upon replica i receives a check message ch
2.21 ifi = p(v') and ch.vj = v’ and recover-prim() then
2.22 send (NEW-VIEW, v, VC, CH, i)w to all replicas;
2.23
2.24 upon replica i receives a new view message nv
225 if not yet received nv with nv.v’ = v’ from p(v') and
recover(nv.V C, nv.C H) then
2.26 h — H(th);
2.27 n « length(ih);
2.28 send (EST-VIEW, v’, n, h, i>"i to all replicas;
2.29
2.30 upon replica i receives an establish view message ev
2.31 if received set E,s of N — f — 1 ev msgs: ev.v’ = v’ and
ev.h = H(ih) and ev.n = length(ih) then
2.32 mh «— ih; v 'y E«— E;
2.33 aw, cw «— max{k : mhlk] # L}; RQ «— mh[cw].RQ;
2.34 start executing request processing;
2.35

A novelty of Scrooge is that each replica which receives
the view change message from 7 checks if the messages in
the history mh has been actually sent by the primary of view
v (see Fig. 2 point b). Let vc.v be the value of the current
view field v contained in a view change message vc sent by
replica ¢ to replica j. Scrooge executes one additional step
during view change to validate that all history elements in
ve, except those in the initial history of view vc.v, have been
built from original order request messages from the primary
of view vc.v (Lines 2.7 — 2.14). When j receives v, it first
verifies that the new view field vc.v’ is higher than the cur-
rent view v of j and that ¢ has not already sent to j a view
change message for the same view. Next, j checks if the el-
ements in the message history of ¢ are “authentic”. For each
element with sequence number £k, j calls the verify function
(see Alg. 3) which first rebuilds the order request message
sent by the primary of view vc.v to i for sequence num-
ber k, and then verifies the authenticator of the message.
Message histories make the first operation possible because
they contain enough information to rebuild the original or-
der request messages, including the message authenticator
Hp(ve.v) used by the primary of view vc.v. Replica j verifies
the authenticator by calculating the MAC of the rebuilt or-

der request message and by returning true if and only if this
MAC is equal with the entry of j in gy (yc..). The results of
the verification of each element in the message history of vc
is stored in a vector res, which is sent to the primary of the
new view v’ in a CHECK message together with additional
information to associate the check message to vc.

Different from existing algorithms, the new primary only
recovers from stable view change messages that are consis-
tently checked by at least b 4 1 replicas (Fig. 2 point c). If
these messages claim that the message history is authentic
we call the history verified. This is the way the VERIFIED
predicate is defined. The purpose of the additional check
step will become clearer at the end of this section, when
we discuss the details of recovery. For the moment, we just
note that all view change messages eventually become sta-
ble in timely periods and that the goal of this step is ensuring
that if the primary of the old view v is non-Byzantine and ¢
stores correct ORD-REQ messages in its history, then: (P1)
the message history becomes verified because it receives
positive CHECK messages from all correct replicas, which
are at least b+1, and (P2) no forged, inconsistent history can
receive a positive CHECK message by any correct correct
replica and thus become verified.

The primary of a new view v’ calls the function recover-
prim() (see Alg. 3) to try to recover the initial history ¢h
whenever it receives a view change message (Lines 2.17 —
2.18) or a check message (Lines 2.20 — 2.22) for v'. We
call this the recovery function. As said before, recovery ex-
amines only stable VIEW-CHANGE message for the new
view. The procedure returns true only if it is able to suc-
cessfully recover all operations completed by any client in
all views prior to v’. In this case, the resulting history forms
the initial history of v" and is stored into 7h. We argue about
the correctness of the recovery function in the next subsec-
tion and continue illustrating the communication pattern.

If history ih is recovered, the primary sends a new view
message to all other replicas with the sets of view change
and check messages VC' and C'H used for the recovery
(see Fig. 2 point d). When a backup receives a new view
message for the view it is trying to establish (Lines 2.24 —
2.28) it executes the same deterministic recover function as
the primary does on the same set of view change and check
messages to build the same initial history. If the backup
recovers an initial history ¢h for a new view v/, it sends an
establish view message to all other replicas in order to agree

VIEW-CHANGE | CHECK NEW-VIEW |[EST-VIEW

Primary of the new view v’. / )

/7 ) o
W/f @ . %’

Sender replica i K
@ o

Same pattern
for other sender replicas

Figure 2: Scrooge view change subprotocol.



Algorithm 3: Scrooge - View change procedures

3.1 function verify(v, n, €)

3.2 d «— H(e.m); or «— (ORD-REQ, v, n, d, e. RQ);
33 o« calculate-MAC(or, p);
3.4 if 4 = e.pp[i] then return true;
3.5 else return false;
3.6
3.7 function recover(VC, CH)
3.8 recovered «— false;
3.9 VCs «— VC\ {vc € VC : =STABLE(vc, CH) V ve.v' # v'};
3.10 if [ VCs| > N — f then
31 mv «— max{v : Jvc € VC, withvec.v =T}
3.12 VCmoy — ve € Vg with ve.v = mu;
3.13 Nmo < N : Vev € ve. E,ev.n, =n;
3.14 ih — {vemy.-mhlk] @ (B < npmo)}s
3.15 RQmuv — VCmy.-Mmh[Nmy]. RQ;
3.16 k «— numo + 1; loop < true; recovered < true;
317 while loop do
3.18 A «— {e : AGREED-CAND(e, k, mv, VCs, ih)};
3.19 O « {e : ORDERED-CAND(e, k, mv, VCs, RQk—1,
ih)};
3.20 if WAIT-AGR(A, k, mv, VCs) or
WAIT-ORD(A, O, k, mv, VCy) then
3.21 loop, recovered «— false;
3.22 else
3.23 if Je € A then
3.24 ihlk] — e;
3.25 else if 3e € O : VERIFIED(e, VCs, C H) then
3.26 ihlk] — e;
3.27 else if 3e € O then
3.28 ihlk] — e;
3.29 else loop «— false;
3.30 RQy < thlk].RQ;
3.31 k—k+1;
3.32 return recovered;
3.33
3.34 function recover-prim()
3.35 V C « set of received view change messages for view v’;
3.36 C'H «+ set of received check messages for view v’;
3.37 return recover(V C, CH);
3.38

on ¢h. If it later receives N — f — 1 establish view messages
for v’ consistent with ih, it forms a view establishment cer-
tificate for ih, sets v’ as its current view and ih as its agreed
history prefix, and updates the watermarks (Lines 2.30 —
2.34). The replica then starts processing messages in the
new view.

If the replica timer expires before the new view is estab-
lished, a view change to a successive new view v’ + 1 is
started, the timer is doubled and all messages related to the
view change to v’ are discarded.

4.2 The recover function

The recover function (see Alg. 3) is a critical compo-
nent because it guarantees that safety is preserved and that
each history prefix observed by any correct client in previ-
ous views is also a prefix of the initial history ¢/ of the next
view. In order to allow the expert reader to verify all the
nuances of the algorithm, and in particular of recovery, we
list the predicates used in the pseudocode in Table 3.

Before starting recovery, a replica ¢ makes sure that it
has received a set V s of at least N — f stable view change
messages for the new view v’. A view change message vc

IN-HISTORY(m, mh) 2 3k : mh[k].m.c = m.c A
mhlk].m.t > m.t

COMMITTED(m, mh, cw) 2 3% < cw : mhl[k].m.c = m.c A
mhl[k].m.t > m.t

SPEC-RUN(i, m, RQp. RQ) £ RQ # L A RQ, = RQ A
4 is backup and has never received a message
with timestamp > m.t from m.c

AGREEMENT-STARTED(%, n, v) £ has received
an agree message ag with ag.n = n and ag.v = v in view v

STABLE(ve, CH) 2 3bool : Vk : ve.mhlk] # L,
3(b+1)ch € CH : ch.vj =vcv Ach.j =wvc.i A
ch.d = digest(ve) A ch.res[k] = bool

AGREED-CAND(e, k, v, VC, ih) =
not IN-HISTORY (e, ih) A
b+ v’ € VO :vc'.v =vAvc .mh[k] =€) A
I(VC| - f—b)vce VC:
e = ve.mh[k] Avew = v Ave.aw > k)

ORDERED-CAND(e, k, v, RQ, VC, ih) =
not IN-HISTORY (e, ih) A
(|VC| — f—b)ve € VC
e = ve.mhlk] Avew = v Avei € RQ ANvecaw < k

WAIT-AGR(A, k, v, VC) £ Je € A:
Ab+1vec e VC :vcw =vAvemhlk] = e) A
éﬂ(f—&-b-&— v € VC :
(e’ v # )V (v’ v = v Avc’ .mhlk] # e)

WAIT-ORD(A, O, k, v, VC) 2 [AUO| > 1A|VC| < N — f A
(Bve € VC :ve.i = p(v) Ave.w = v)

VERIFIED(e, VC, CH) 2 3k, ve € VC : e = ve.mh[k] A
3+ 1)ch € CH :ch.vj =vecv Ach.j =vc.i
A ch.d = digest(ve) A ch.res[k] = true)

Table 3: Predicates

is stable if each element in the corresponding message his-
tory ve.mh is consistently verified by at least b + 1 check
messages received by ¢ (Lines 3.9 — 3.10). In timely periods
each view change message vc sent by correct replicas even-
tually become stable as all N — f > f 4+ 2b > 2b correct
replicas send CHECK messages containing binary vectors
res for ve.mh.

Recovery starts by selecting an initial prefix for the initial
history ¢h (Lines 3.11 — 3.15). The highest current view mwv
included in a view change message in V' Cj is either the last
view lv < v’ where some client has completed a request, or
a successive view where all requests completed in [v have
been recovered. This is because atleast N — f —b > f+b
correct replicas must have established [v and at least b > 0
of them have sent a message included in V' Cs. Scrooge first
recovers the initial history ¢h of mwv from any view change
message containing a message history for mv. View change
messages include a view establishment certificate £ com-
posed of N — f signed messages all containing the same
length n,,,, of the initial history of mv and the same cor-
responding history digest. The certificate ensures that the
initial history ¢h recovered from the view change message
VCmy 18 the correct initial history for mv and is not forged
by a Byzantine replica. Together with the initial history also
the initial recovery quorum R(@),,,, is recovered.

The next step is recovering the history elements observed
by clients during view muv for sequence numbers £ > 7y,



(Lines 3.16 — 3.31). If a request has been completed by a
client from b + 1 stable replies, at least one correct replica
has committed the entire history prefix up to that request.
A replica commits a history element only if the number of
replicas which have agreed on it is sufficient to recover the
element like in PBFT [2] (Lines 3.23 — 3.24). Our definition
of agreed candidate and the wait condition used to decide
whether a potentially agreed candidate must be recovered
are equivalent to those used in the view change of PBFT and
are reflected by predicates AGREED-CAND and WAIT-
AGR. Therefore, we do not further discuss the recovery of
agreed-upon requests and focus on the recovery of histories
completed through speculative replies.

4.2.1 Why are replier quorums useful?

If a reply is delivered by clients in a fast manner, that is,
out of speculative replies (Lines 1.28 — 1.30), recovering it
requires a higher redundancy than the minimum. Scrooge
reduces these additional costs. By recovering agreed his-
tory elements, a replica also recovers the replier quorum
which has been updated when the element has been commit-
ted. Recovering the replier quorum R(),, committed for se-
quence number n allows to clearly identify the set of repli-
ers for sequence numbers greater than n and thus to reduce
the number of required replicas to 2f + 2b + 1. To see that,
consider a system having N = 2f + 2b + 1 replicas where
replier quorums consist of N — f replicas. Assume that a
client completes a request in a view v for sequence number
n' > n after receiving matching speculative replies from all
repliers, at least N — f — b of which are correct, and assume
that R(Q),, is the last recovered replier quorum for sequence
numbers smaller than n'.

If the primary fails, the history prefix up to n’ must be
recovered to ensure safety. To this end, all replicas share
their history, but only the histories of repliers in the replier
quorum need to be considered. During view change up to f
of the N — f — b correct repliers might be slow and might
fail to send a stable VIEW-CHANGE message. Due to the
asynchrony of the system, the primary can not indefinitely
wait for these messages because it can not distinguish if the
replicas are faulty or simply slow. Despite this, the new
primary can always receive view change messages from at
least N — 2f — b = b+ 1 correct repliers reporting the his-
tory prefix observed by the client. As the primary knows the
identity of the repliers and as only b Byzantine repliers can
report incorrect histories, the observed prefix can be recov-
ered by selecting a history reported in the VIEW-CHANGE
message of at least b + 1 repliers.

4.2.2 Why are message histories useful?

Scrooge further reduces the replication costs to N = 2 f4-2b
replicas by using message histories and the check messages.
Assume that a client has delivered a reply to a request m af-
ter receiving matching speculative replies from all repliers

for a sequence number n’. During view change, as we use
one replica less than the previous case, the history observed
by the client is reported in the VIEW-CHANGE message of
atleast N —2f — b = brepliers. Let |V Cs| > N — f be the
number of stable view change messages received by the pri-
mary of the new view. We call a history element reported by
|[VCs| — f — brepliers an ordered candidate. The set of ob-
served candidates is defined by the predicate ORDERED-
CAND. It follows from this definition that two different or-
dered candidates may be reported for sequence number n’
and view v by two sets @ and Q' of [VCs| — f —b =b
repliers each, where Q contains correct repliers and Q' the
Byzantine ones. The problem is distinguishing the candi-
date containing m from other candidates.

If two sets of b replicas claim to have two inconsistent
histories for the same view v and the old primary p of view
v is in one of these sets, then either p is Byzantine and has
sent inconsistent order requests to the backups, or b backups
are Byzantine and are reporting a forged history. There-
fore, at least one Byzantine replier is contained in one of
these two sets and that it is live to wait for the view change
message from one additional correct replier as indicated
by the predicate WAIT-ORD. After the additional VIEW-
CHANGE message has been received and has become sta-
ble, |V Cs| > N — f. As only the correct history is reported
by at least |V Cs| — f — b > brepliers, it is recovered as the
only remaining observed candidate (Lines 3.27 — 3.28).

If there are two different candidates reported by b repli-
cas each and the primary is none of these sets we distinguish
two cases. If p is not Byzantine, but potentially faulty, it
might be impossible to wait until only one ordered candi-
date remains. In this case the predicate WAIT-ORD is false
and a verified candidate is recovered if present (Lines 3.25 —
3.26). Message histories and the novel check phase allow
to identify in these cases the history prefix observed by the
client. In fact, recovery uses stable view change messages
whose history elements are verified by b+ 1 check messages
in C'H with consistent positive outcomes (Lines 3.9 —3.10).
Clients only deliver a speculative reply if all the repliers,
including the non-Byzantine primary, have the same mes-
sage history of ORD-REQ messages. This and the proper-
ties (P1) and (P2) of the check phase ensure that the history
element observed by the client is verified and recovered.

The second case is when the old primary p is Byzantine.
This implies that at most b — 1 Byzantine repliers are in-
cluded in the two sets reporting the two different ordered
candidates. Two correct repliers have thus received incon-
sistent histories from the primary. This inconsistency is de-
tected by the client by checking the history digest of the
SPEC-REP messages. Therefore the client does not deliver
the reply, a contradiction.



4.2.3 Why is Validity ensured?

We have argued above that after view change, the largest
history prefix i observed by any correct client in previous
views is recovered and included into the initial history ¢h
of the new view. Unlike other protocols, Scrooge allows a
request to be included into ¢h even if it is only reported by
b Byzantine-faulty replicas. As client requests are signed
and Byzantine replicas can not forge the signature of cor-
rect clients, no request in ¢h is fabricated. This corresponds
to the customary Validity condition satisfied by other BFT
replication protocols, e.g. [8].

5 Evaluation and Comparison

We conduct a comparative evaluation of Scrooge with
other existing protocols: the standard PBFT protocol and
two state-of-the-art fast protocols with publicly-available
implementation, Zyzzyva and Zyzzyva5. The goal of
the evaluation is to show that, during normal executions,
Scrooge does not introduce significant additional overheads
in the critical path compared to other speculative proto-
cols such as Zyzzyva and Zyzzyva5. The results prove
that Scrooge has the same performance as Zyzzyva in fault-
free runs. Scrooge also improves over the performance of
Zyzzyva in presence of unresponsive replicas, reaching the
same performance as Zyzzyva5 but with less replicas.

Scrooge adds two types of overhead in the critical path.
First, it uses larger history elements which include authenti-
cators. This increases the overhead of executing the history
digests included in the speculative replies. Second, specula-
tive replies must include a bitmap representing the current
replier quorum. The purpose of the evaluation is to show
that these additional overheads are negligible.

A thorough comparison between quorum-based and
speculative algorithms can be found in [16]. Just to give
a point of reference, however, we scaled the performance
figures of Q/U of [1] to our setting.

5.1 Optimizations

Scrooge uses similar optimizations as PBFT and
Zyzzyva to improve the performance of the protocol. The
main difference between Zyzzyva and Scrooge is the read-
only optimization, which lets client clients try to send read-
only requests directly to the replicas, which reply to the
request without having the primary order them. If this
does not succeed, the client sends the read as a regular re-
quest [2, 9]. In Scrooge, the optimization succeeds if clients
receive N — f consistent replies from replicas in the same
replier quorum. In Zyzzyva, all replicas need to send con-
sistent replies for the read optimization to succeed.

The Zyzzyva library uses a commit optimization to opti-
mize the performance with unresponsive replicas. If a client
cannot receive speculative replies from all replicas for a re-
quest, it explicitly notifies replicas to stop using speculation
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Figure 3: Throughput for 0/0 microbenchmark without
batching and with f = 1.

for successive requests and to use instead an all-to-all agree-
ment round that is similar to the prepare phase of PBFT.
Without commit optimization, the performance of Zyzzyva
with unresponsive replicas degrades [9].

Batching improves the performance of BFT algorithms
under high load by letting replicas execute the protocol on
groups of client requests [2]. However, batching makes it
more difficult to compare algorithms as large batches make
the performance of all algorithms converge [16], making an
objective comparison more difficult.

PBFT, Zyzzyva and Zyzzyva5 use MACs for client re-
quests but they are vulnerable to client attacks [4]. Scrooge
tolerates such attacks by using signed requests. A fair
experimental comparison would require running all algo-
rithms with signed requests. However, the use of signatures
for client requests impacts all protocols in a similar man-
ner, making their performance figures closer. Therefore, we
conduct this comparative evaluation assuming that all algo-
rithms use MACs.

5.2 Evaluation setup

Our setting tolerates a single fault (f = b = 1). PBFT,
Zyzzyva and Scrooge use four replicas while Zyzzyva5 uses
six. All machines in the experiments have Intel Core2DUO
6400 2.1GHz processors, 4 GB of memory and Intel E1000
network cards. Since servers are single-threaded processes,
the server machines perform as if they had a single 2.1GHz
processor available. We use Fedora Linux 8 with kernel
version 2.6.23 and a Gigabit switched star network. We
use MD5 to compute MACs and the AdHash library for in-
cremental hashes as in [2, 9]. Measurements are initiated
when performance is stable and the system has executed the
first 10,000 operations, and are stopped when the successive
10,000 operations are completed. In order to test the perfor-
mance of the protocols in isolation, we use the same X/Y
micro-benchmark used by the authors of PBFT [2], where
X and Y are the size (in KB) of client requests and replica
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replies respectively.

We tested all protocols in scenarios where all replicas are
responsive and where one replica is unresponsive because it
is initially crashed.

5.3 Throughput

We first examine the throughput of Scrooge. Fig. 3
shows the throughput achieved by the 0/0 micro-benchmark
without batching. Scrooge is the protocol which achieves
the highest throughput with the lowest, and in this case
minimal, number of replicas. Zyzzyva5 displays similar
trends but a slightly lower peak throughput. This is prob-
ably due to the use of a larger number of replicas, which
forces the primary to calculate a higher number of MACs
(40% more than Scrooge) to authenticate order request mes-
sages. Zyzzyva can perform as well as Scrooge only in runs
with all responsive replicas because it cannot otherwise use
speculation. In runs with one unresponsive replica, the peak
throughput improvement of Scrooge over Zyzzyva is more
than one third. PBFT does has lower peak throughput be-
cause it calculates at least twice as many MACs as Scrooge
and has quadratic message complexity.

If we consider read-only requests with one unresponsive
replica the difference becomes even more evident because
Zyzzyva is not able to use the read optimization, as previ-
ously discussed. Even if we use batches of size 10, thus
reducing the relative difference among protocols, Zyzzyva
achieves 52 kops/s peak throughput in presence of read-only
workloads, whereas Scrooge achieves a peak of 85 kops/s.

5.4 Latency

The latency of different protocols using different micro-
benchmarks is shown in Fig. 4. Scrooge performs in line
with Zyzzyva5 with all micro-benchmarks. PBFT has ap-
proximately 40% higher latency than Scrooge for write
requests and similar latency as Scrooge for read-only re-
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Figure 5: Latency-throughput curves for 0/0 microbench-
mark without batching and with f = 1.

quests. Zyzzyva suffers a significant performance degra-
dation in runs with unresponsive replicas. In case of write
requests the difference with Scrooge ranges between 14%
for the 0/4 case to 22% for the 0/0 case. The difference
becomes much higher for read-only operations because un-
responsive replicas disable the read-only optimization. The
time a client needs to wait when it tries to use the read op-
timization without success depends on the timer settings of
the client and is hard to evaluate. Fig. 4 only considers for
Zyzzyva the optimistic latency given by processing read re-
quests upfront as normal writes. Even in this scenario, the
latency of Zyzzyva compared to Scrooge is 29% higher in
the 0/0 case and up to 98% higher for the 4/0 case.

Fig. 5 illustrates how latency scales with the throughput
when batching is not used. Scrooge is the protocol achiev-
ing the best latency at lowest, and in this case minimal, cost.
Scrooge and Zyzzyva5 have almost equal measurement re-
sults. Zyzzyva displays higher latency in runs with unre-
sponsive replicas starting with an initial load of 10 clients
(~ 0.9 kops/sec).

5.5 Fault scalability

A fault scalable replication protocol keeps costs low
when the number of replicas, and thus of tolerated faults,
grows [1]. Scrooge is the most fault-scalable primary-based
protocol in presence of unresponsive replicas. In Scrooge a
primary computes 2 + (4f — 1) /s MACs operations per re-
quest if b = f and s is the size of a batch. This is also
the number of messages sent and received by the primary.
Zyzzyva has a slightly lower overhead in fault-free runs,
2 4 3f/s. Scrooge is more scalable than PBFT (2 + 8f/s)
and ZyzzyvaS and Zyzzyva with one unresponsive replica
and with commit optimization (2+5/s). In Q/U, however,
the bottleneck replica makes only 2 MACs operations per
request. Note that renouncing to the commit optimization
in Zyzzyva results in linear complexity but in significantly
lower performance with unresponsive replicas [9].



Scrooge uses 1 + 3f + (4f — 1)/s messages per re-
quest, approximately the same as Zyzzyva in fault-free runs
(24+3f+3f/s), Zyzzyva5 (2+4f +5f/s) and, if batching
is not used, Q/U (2+8f). Both PBFT and Zyzzyva with un-
responsive replicas and commit optimization have quadratic
message complexity.

6 Related Work

We have already provided a comparison of Scrooge with
PBFT [2], Zyzzyva [9] and DGV [7] throughout the paper.

In [8] a framework is proposed where different protocols
can be combined to react to different systems conditions.
The authors present two new protocols which improve the
latency or the throughput of BFT replication in fault-free
runs where specific preconditions are met (e.g. clients do
not submit requests concurrently). In presence of unrespon-
sive replicas, these protocols need to switch to a backup
protocol such as PBFT.

Protocols like Q/U [1] and HQ [6] let clients directly in-
teract with the replicas to establish an execution order. This
reduces latency in some case but is more expensive in terms
of of MACs operations [9, 16].

Preferred quorums is an optimization used by clients in
some quorum-based BFT replication protocol to reduce the
cryptographic overhead or to keep persistent data of pre-
vious operations of the client [6, 1]. Preferred quorums
are not agreed-upon using reconfigurations and are not used
during view change. This technique is thus fundamentally
different from replier quorums because using (or not using)
it has no effect on the replication cost of the protocol.

Some papers, such as [5, 14, 3], propose reducing the re-
dundancy costs of BFT replication by assuming a stronger
system model where trusted components, and sometimes
synchronous networks, are used.

In a previous workshop paper [15] we discussed the mo-
tivations of Scrooge and only announced the results of this
paper. The Scrooge protocol is presented here for the first
time together with its evaluation.

7 Conclusions

Current protocols for BFT state machine replication re-
quire making a tradeoff between optimal performance and
replication costs. Scrooge mitigates this tradeoff by two
novel techniques: replier quorums and message histories.
Evaluations show that, compared with Scrooge, PBFT is
less performant, Zyzzyva matches its performance only in
fault-free runs, and Zyzzyva$5 has similar performance but
higher replication costs. For the first time, in systems where
tolerating any number of crashes and one Byzantine failure
is sufficient, Scrooge reaches fast agreement with unrespon-
sive replicas using a minimal number of replicas.
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A Correctness of the Scrooge protocol

In this Section, we prove the correctness of the simpli-
fied Scrooge protocol. In the next two sections we describe
the full version of Scrooge by extending the simplified ver-
sion, and we prove that the introduced modifications pre-
serve correctness. As customary, we first prove that the
protocol never violates some invariant properties (safety)
and that the protocol eventually achieves some useful re-
sults (liveness).

A.1 Replica state and definitions

We consider systems composed by N > 2 f+2breplicas.
At most f > 0 replicas can be faulty and at most b can be
Byzantine, with 0 < b < f, while the others only crash.

We reason in terms of the message history, or simply
history, stored by replicas. A history is an array indexed
by a unique sequence number n. Each history element is a
triple including the following fields:

e aclient request m
e areplier quorum R(Q)
e a primary authenticator /i,

Replicas go through a sequence of views, and accept
messages of the agreement protocol for a view v > 0 only
if after the view change to v is completed. In this case the
view is called is established. We say that a replica is in view
v if v is its last established view. If a correct replica ¢ in
view v participates to a view change to a view v/ > v, it
can build a tentative history for v, which is denoted as ¢-
hist(v, ). Tentative histories are indicated by the primary of
the new view v’. When a correct replica ¢ establishes view
v’, it agrees with the other replicas on the tentative history
(Lines 2.30 — 2.34), which then becomes an established his-
tory and is denoted as e-hist(v, 7). Each view v has a pre-
defined primary p(v). In the pseudocode, both tentative and
established histories are denoted by ih during view change.

A history prefix in view v for sequence number n and
correct replica i is denoted as prefix(n, v, ¢) and is defined
as the subset of the message history elements stored in view
v by 4 with sequence number n’ < n. Given two histories
h and k', h is a prefix of h' iff for each element of h there
is also one identical element of h’ associated with the same
sequence number. Furthermore, h is a request prefix of h'
iff for each history element of h there is an element in A’
associated with the same sequence number, client request
and replier quorum.

An agreed history prefix in view v for sequence number
n and correct replica 1 is any history prefix in view v for n
and ¢ where n < aw and aw is the agreement watermark
of ¢ at the end of view v. It is denoted as a-prefix(n, v,
). Committed history prefixes c-prefix(n, v, i) are defined
similarly.
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[ Name [ Description [ Type [ Init ]
v current view timestamp 0
RQ replier quorum set of pids [0O,N-f-1]
n current seq. number timestamp 0
mh message history array of (req.,RQ,auth.) 1
h history digests array of digests 1
aw agreed watermark timestamp 0
cw commit watermark timestamp 0
SL suspect list set of f pids [N-fN-1]
nsr seq. number of SL timestamp 0
v’ new view timestamp 0
ih initial history array of (m, RQ, auth.) 1
B view establishment setof N — f signed default
certificate EST-VIEW messages value

Table 4: Global Variables of a Replica

View establishment certificates are attached to each view
change message. A view establishment certificate E re-
ceived from a replica ¢ is valid for a view change mes-
sage vc if F ve.F and all its N — f signed estab-
lish view messages ev from different replicas contain the
same view number ev.v = vc.v, the same sequence num-
ber ev.n < ve.aw and the same correct digest ev.h of the
history prefix {vc.mh[0], ..., ve.mhlev.n]}.

A replier quorum RQ’ # L is said to be valid for cor-
rect replica i in view v at sequence number n if, given the
highest sequence number n. < n such that c-prefix(n,, v,
i), all the history elements with sequence number in [n., n]
contain RQ’. We denote this as RQ-valid(RQ’, n, v, 7). A
replier quorum RQ’ # L is said to be current for correct
replica t in view v at request n if replica ¢ in view v has
set RQ to RQ’ when it handles the order request for se-
quence number n in Lines 1.15 — 1.26. We denote this as
RQ-current(RQ’, n, v, 1). The difference between the two
predicates is that the first refers to replier quorums stored
in the history logged by a replica, while the second refers
to the current replier quorum of the replica when an order
request message is processed.

A correct client ¢ completes an operation o after receiv-
ing replies from a quorum of replicas in view v which ex-
ecuted the request with the same sequence number n and
history prefix h. We denote this as complete(o, n, v, h, c).

A.2 Agreement and Helper procedures

Before discussing the correctness of the algorithm
we provide the pseudocode of the reconfiguration phase
(Alg. 4) and of the helper procedures (Alg. 5) together with
the list of variables of the algorithm (Tab. 4).

A.3 Proof sketch

In this section we provide proof sketches for the safety
and liveness properties of the protocol. For simplicity, we
assume here that f = b.



Algorithm 4: Scrooge - Explicit agreement

Algorithm 5: Scrooge - Helper procedures

4.1 procedure agree(m)

4.2 if 3k : mh[k].m = m and never sent agree message for sequence
number k in view v then
4.3 send (AGREE, v, k, h[k], i) ., to all replicas;
4.4 start timer if not already running;
4.5
4.6 upon client timeout
4.7 SL — 1;
4.8 if 3RQ : received matching speculative replies sp to m with
sp.RQ = RQ fromaset S C RQ of N — 2f replicas then
49 SL — RQ\ S;
4.10 stop waiting for sp messages; timer «— timer - 2;
4.11 repeat
4.12 send m = (REQ, o, t, ¢, SL) 5. to all replicas;
4.13 until client receives b + 1 matching stable replies st to m ;
4.14 deliver (o, t, st.r);
4.15
4.16 upon backup i receives request m from client m.c

4.17 if not IN-HISTORY (m, mh) then

4.18 send m to primary p(v);

4.19 start timer if not already running;

4.20 else if not COMMITTED(m, mh, cw) then agree(m);

4.21 else reply-cache(m.c);
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4.23 upon replica i receives an agree message ag from replica ag.i

4.24 ifag.v = vand ag.h = hlag.n] then

4.25 agree(mhlag.n].m);

4.26 if received N — f — 1 matching agree messages for ag.n from
other replicas then

4.27 send (COMMIT, v;, n, i), to all replicas;

4.28 aw «— ag.n;

4.29

4.30 upon replica i receives a commit message cm from replica cm.i

4.31 if cm.v = v and cm.n < aw and received N — f — 1 matching

commit messages for cm.n from other replicas then

4.32 ¢ « mhl[em.n].m.c; t < mhlcm.n].m.t;

4.33 r « stored reply for mh[cm.n];

4.34 send (STAB-REP, v, n/, c, t, , )i toclient c;

4.35 if cw < c¢m.n then

4.36 cw «— cm.n; RQcw — mhlcw].RQ;

4.37 ifVk € [cw,n] : mh[k].RQ = RQc. then

4.38 RQ — RQcw;

4.39 if never sent agree message for sequence number n' > cw and
view v then stop timer;

4.40 send-missing-spec-rep(cw, RQ cw);

4.41

4.42 upon replica timer expires

4.43 timer «— timer - 2;

4.44 view-change(v’ + 1) ;

4.45

A.3.1 Safety

The safety property of BFT replication protocols is that
clients have the abstraction of interacting with a non-
replicated server executing all requests according to a to-
tal order [12]. Therefore, if two clients issue two differ-
ent requests and complete them, these must have been con-
sistently ordered by the replicas which have generated the
delivered replies. We now argue that this property holds
within a view and across views.

Within a view: A client can complete requests in a view
in two cases: either after receiving 3 f matching speculative
replies or after receiving f + 1 stable replies. If two clients
complete a request, they receive speculative replies from
two sets of replicas which intersect in one correct replica i.
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5.1 procedure update (SL’)

52 ifn > ngr and |[SL’| < f then
53 nsr < n;
5.4 if p(v) € SL' then SL’ — SL' \ {p(v)};
55 remove the |SL’| oldest elements from S L;
5.6 add elements of SL’ into SL;
5.7
5.8 procedure agree(m)
59 if 3k : mhlk].m.c = m.c and mh[k].m.t = m.t and never sent
agree message for sequence number k in view v then
5.10 send (AGREE, v, k, h[k], i), to all replicas;
5.11 start timer if not already running;
5.12
5.13 procedure reply-cache(c)
5.14 n’ « sequence number of last committed operation from c;
5.15 r « stored reply for mh[n'];
5.16 send (STAB-REP, v, n’, ¢, mh[n/].t, rc[n/], i) 4,  to client ¢;
5.17
5.18 procedure send-missing-spec-rep(k, RQ)
5.19 ifi € RQ then
5.20 while mh([k].RQ = RQ and never sent speculative reply for
sequence number k in view v do
5.21 m < mhlk].m; r < stored reply for mh/[k];
5.22 send (SPEC-REP, v, k, h[k], RQ m.c, m.t, r, i), to
client m.c; k — k4 1;
5.23

Since correct replicas execute requests in the order dictated
by sequence numbers, replica ¢ has established a local or-
der between the two requests. A client completes a request
from speculative replies only if 3 f repliers have sent a con-
sistent history digest. This implies that these replicas have
the same history as 4, so the requests are consistently or-
dered. A similar reasoning can be done if one of the client,
or both, deliver after receiving stable replies. In fact, sta-
ble replies are agreed by replicas after receiving a set of 3 f
agreement messages with matching histories and any two
such set intersect in a correct replica 7.

Across views: 1If a client completes a request m after
receiving replies for view v and sequence number n and a
view change to view v + 1 occurs afterwards, m must be
associated with n in the new view as well. This ensures
that if a second client completes a request in v + 1, and
by induction in any successive view too, the two requests
will be consistently ordered. We now consider how m is
recovered during view change.

If m has completed from f + 1 stable replies, at least
one correct replica has received in view v matching com-
mit messages for n from at least 2f correct replicas. These
replicas have a common agreed history prefix including all
elements with sequence numbers n’ < n. During the view
change protocol, at least f of these correct replicas will send
a view change message to the new primary. Request m is
thus included in one agreed candidate. However, at most f
other faulty replicas might report a different agreed candi-
date. In order not to be discarded, agreed candidates must
be contained in the history of at least f + 1 replicas, one
of which is correct. If this holds for both candidates, it im-



plies that the primary has sent two different ordered request
messages for n and is thus one of the f replicas reporting a
different candidate. The view change message from the pri-
mary is discarded in this case and a view change message
from a correct replica, which can only report m as agreed
candidate for n, is awaited. After that, only the agreed can-
didate containing m remains and is selected by the recovery
function.

If m has completed after the client has received 3 f spec-
ulative replies from a replier quorum RQ), at least 2f cor-
rect repliers ¢ had updated their current quorum R@); to
RQ when they had committed on an agreement watermark
ni < n. The history element for n’, and thus the replier
quorum R() contained in it, can thus be recovered. Before
delivering, the client has also checked that all the 2f cor-
rect repliers ¢ have a common history consisting of elements
with sequence numbers n’ < n. Also, as the request has
been speculatively replied by all correct replicas in RQ), the
SPEC-RUN predicate was true when the repliers received
the order request message for n. This implies that RQ); was
not set to L by any of the correct repliers. The replier quo-
rum RQ) is thus contained in all history elements stored with
sequence number n’ such that n’, < n’ < n by each cor-
rect replier. By induction on n’, RQ,,_1 is set equal to RQ
when a agreement is reached for n. During view change,
the primary will receive at least f view change messages
from elements in RQ),,_1 associating m to n. The request
m 1s thus associated with an ordered candidate, which is
selected for sequence number n by the recovery function
and included into the initial history of v as discussed in
Section 4.2. If a different request m’ is reported as agreed
candidate by f faulty replicas and is included in the histo-
ries of f + 1 view change messages, this indicates that the
old primary of view v was faulty and has sent inconsistent
ordered requests. Its message is thus discarded and another
message from a correct replica is awaited. After this is re-
ceived, m/ is not an agreed candidate any longer as correct
replicas can only agree on m.

A.3.2 Liveness

Liveness is guaranteed when the system is in timely peri-
ods and thus the same view can be established by all correct
replicas. If a client ¢ cannot complete its request m from
speculative replies, it resends m to all replicas. If the pri-
mary is correct, the SPEC-RUN condition ensures that the
agreement and commit phases are executed by each correct
replica once one correct replica receives both m from ¢ and
the corresponding order request message from the primary.
All correct replicas initiate and complete the agreement and
commit phases on the entire history prior to m and send to
f + 1 matching stable replies to c¢. These are sufficient to
complete the request. If this does not eventually happen, the
primary is faulty and at least f + 1 correct replicas accuse
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it. This is sufficient to let all replicas initiate a view change.

The protocol cannot block during view change in timely
periods. A new correct primary can always wait for 3 f well-
formed view change messages from correct replicas. Each
of them eventually becomes stable as the outcome vectors o
contain binary boolean values and the new primary receives
outcome vectors from 3 f correct replicas for each of these
view change messages. Additional messages are waited if
there are multiple candidates for a sequence number and
one of them is included in the view change message sent by
the primary of the last established view v. This implies that
at least one faulty replica has sent a view change message
and is thus possible to wait for one additional view change
message. Also, if an agreed candidate e is sent by correct
replicas, at least 2 f correct replicas have it in their local his-
tory. If an incorrect agreed candidate is reported by a faulty
replica, all 3 f correct replicas send view change messages
reporting that no agreement on it was reached. In both cases
progress is ensured.

A.4 Scrooge safety

The safety property provided by BFT replication proto-
cols is that different correct clients always observe consis-
tent histories, as reflected in the following safety property.

Property 1 For each pair of correct clients ¢1 and co and
for each pair of operations 01 and 0o completed by client cq
and co respectively, let nq and no be the sequence numbers
associated with 01 and oy respectively and hy and ho the
history prefixes stored in any view by any correct replica
for ny and ny respectively. If ny < no, then hy is a request

prefix of hs.

The purpose of this section is to prove that Property 1 is
an invariant.

We first prove some consistency properties within a view
v, and then we show how consistency is preserved across
views.

Lemma 1 If h = e-hist(v, 1) and h' = e-hist(v, j), then h =
n.

Proof: 1If v = 0 all replicas have the same established
initial history, which is empty.

If v > 0, replicas consider their initial history for view
v as established in Lines 2.30 — 2.34 after having received
valid establish view messages with matching history digests
from a quorum of N — f replicas, including at least N —
f —b > f + b correct replicas. If two correct replicas 4
and j have established the same view v, there are at least
b > 0 correct replicas k in the intersection of the quorums
of 7 and j. Since a correct replica accepts only one new
view message per view in Lines 2.24 — 2.28, it never sends
two different establish view message. The initial histories
for ¢ and j are thus the same.



Lemma 2 If i = prefix(n, v, i) and b/ = prefix(n’, v, i) and
n < n' then h is a prefix of I/,

Proof: A correct replica 4 in view v adds an entry to its
history only upon receiving order request messages from the
current primary p(v) (Lines 1.15 — 1.26). The entry for se-
quence number n is added only if n is the smallest sequence
number not yet associated with an entry in the history of i.
This implies that (a) only one entry can be associated with
a given sequence number in a history in view v, (b) there
are no gaps and (c) if & is the history prefix for sequence
number n, requests for higher sequence numbers n’ added
in view v are appended to h.

Lemma 3 If RQ-current(Q), n, v, i) then RQ-valid(Q, n, v,
i).

Proof: Let n. be the highest sequence number smaller
than n such that c-prefix(n., v, 1) and assume by contra-
diction that RQ-valid(Q), n — 1, v, i) does not hold. This
implies that some history element with sequence number in
[e, n — 1] contains a replier quorum S # Q. Let ng > n,
be the highest sequence number of such an element. From
RQ-current(Q, n, v, i) it follows that RQ) = @ for ¢ when
the order request with sequence number n is processed by
¢ in view v (Lines 1.15 — 1.26). Order requests are pro-
cessed following their sequence numbers and the replier
quorum R() is set to L if the predicate SPEC-RUN does
not hold. RQ is set to a value () # L in view v only when
a new commit watermark is reached in v and all history el-
ements from the commit watermark up to the current se-
quence number are associated with () in the message his-
tory of ¢ (Lines 4.30 — 4.40). Therefore, RQ-current(Q, n,
v, 1) implies that (a) there exists a sequence number ng < n
such that a commit on n is reached in view v before an or-
der request with sequence number k < n is processed and
@ is associated to all history elements in [ng, k — 1], and
(b) RQ is not set to | when order request with sequence
numbers in [k, n] are processed, so SPEC-RUN holds and
RQ, = Q for all the corresponding history elements. This
implies that ng > ng > n., which contradicts the defini-
tion of n..

Lemma 4 If a correct replica ¢ in view v sends a specula-
tive reply for a request associated with sequence number n
in its history, then there exists a replier quorum ) such that
RQO-valid(Q), n, v, i) and i € Q.

Proof: 1If i sends the speculative reply in Lines 1.15 —
1.26 it follows from SPEC-RUN that it received an order
request message for n from the primary p(v) containing a
replier quorum R(Q) # 1 such that RQ-current( RQ, n, v, i)
holds and ¢ € Q. The result thus follows from Lemma 3.

If ¢ sends the speculative reply after a commit in
Line 4.40, the result follows from the fact that the proce-
dure send-missing-spec-rep checks that ¢ € ) and that @
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is associated to the history element with the highest com-
mitted sequence number n. < n and to all history elements
with sequence numbers in [n.,n]. This ensures that each
commit with sequence number in [n., n| is associated with
Q, as required by RQ-valid(Q, n, v, i).

Lemma 5 If i = a-prefix(n, v, 7) then either h is a prefix of
e-hist(v, i) or there exist N — f — b correct replicas j such
that h = prefix(n, v, 7).

Proof: A correct replica ¢ can update its agreed water-
mark to aw > n in two cases: when it establishes the view
v in Lines 2.30 — 2.34 or when it completes an agreement
phase for sequence number aw in Lines 4.23 — 4.28. In the
first case, h is a prefix of e-hist(v, i) as from Lines 2.30 —
2.34. In the second case, replica ¢ has received equal agree
messages containing a history digest for h and sequence
number n from a quorum @ of IV — f replicas in view v. At
least N — f — breplicas in () are correct and have thus sent
matching agree messages only if h = prefix(n, v, j).

Lemma 6 If a; = a-prefix(n;, v, 1) and a; = a-prefix(n;, v,
j)and n; < ny, then a; is a prefix of a;.

Proof: From a; = a-prefix(n;, v, i) and Lemma 5 either
a; is a prefix of e-hist(v, ¢) or there exist at least N — f — b
correct replicas k such that a; = prefix(n;, v, k).

In the first case, it follows that if any correct replica j
has a history prefix a; in view v, then e-hist(v, j) is a prefix
of a; (from Lemma 1) and e-hist(v, j) = e-hist(v, i) (from
Lemma 2). It thus follows that a; is a prefix of a;.

In the second case, it follows from Lemma 5 that there
exists a set of at least N — f — b > f + b correct replicas
k such that a; = prefix(n;, v, k). As n; > n;, replica j also
sets its agreement watermark in Lines 4.23 — 4.28 after re-
ceiving agree messages from at least b > 0 of these correct
replicas k reporting that a; = a;, = prefix(n;, v, k). Since
k is correct, from Lemma 2 and n; > n, it follows that
prefix(n;, v, k) is a prefix of prefix(n;, v, k), and thus a; is
a prefix of a;.

Lemma 7 If h = a-prefix(n, v, i) and there exist at least
f + 1 correct replicas j and a history prefix h' = prefix(n/,
v, j) forn’ > n, then h is a prefix of A’.

Proof: From h = a-prefix(n, v, i) and Lemma 5 either
h is a prefix of e-hist(v, i) or there exist N — f — b correct
replicas k such that h = prefix(n, v, k).

In the first case, it follows that if any correct replica j
has a history prefix 4’ in view v, then e-hist(v, j) is a prefix
of A/ (from Lemma 1) and e-hist(v, j) = e-hist(v, i) (from
Lemma 2). It thus follows that h is a prefix of 1.

In the second case, a set S of at least N — f — b correct
replicas k have h = prefix(n, v, k). From Lemma 2 it fol-
lows that if any of these replicas has an history prefix " =



prefix(n/, v, k) for n’ > n, then h is a prefix of h”. Since
each set of f+1 correct replicas j intersect with one correct
replica in S, their common history prefix i’ is equal to h”.

We can now show how the protocol preserves consis-
tency across views. The following lemmas are the core lem-
mas to prove the safety of the protocol.

Lemma 8 If ¢h = t-hist(v + 1, ¢) and there exist a sequence
number n and N — f replicas j such that a-prefix(n;, v, j)
for n; > n if j is correct, then all j have the same history
prefix hp = prefix(n, v, j) and hp is a request prefix of ¢h.

Proof: We consider the case where i is the primary
of view v + 1. The case of the other backup replicas is
similar since the same decision procedure recover used by
the primary to recover ¢h is used by the backups.

In Lines 2.7 — 2.18 of the view change to view v + 1,
the primary of the new view v + 1 receives view change
messages vc with message histories ve.mh including i’ as
a prefix and with ve.aw > n from at least N —2f — b of the
at least N — f — b correct replicas j. Since v is the highest
established view smaller than v+ 1 and since it is contained
in N —2f —0b > b > 0 view change messages in VC, v
is selected as the highest previous established view mv in
Lines 3.11 — 3.15. From Lemmas 1 and 2, e-hist(v, 1) is
a prefix of hp. Also, e-hist(v, i) is a prefix of ¢h because
muv = v implies that the initial history ih is set to e-hist(v,
1) in Lines 3.11 — 3.15. We now prove that the suffix of hp
which is not included in e-hist(v, i) is also included in ¢k in
Lines 3.16 — 3.31.

From the hypothesis, there exist at most f correct repli-
cas [ such that b’ # a-prefix(n, v, ). For each history el-
ement e with sequence number n’ < n in the suffix of hp,
AGREED-CAND(e, n/, v, VC) holds. In fact, apart at
most b Byzantine replicas and f correct replicas, all other
correct replicas j send view change messages vc to the new
primary of v" such that ve.v = mv = v, e = ve.mh[n/]
and vc.aw > n. This is because for all replicas j, hp =
a-prefix(n, v, j) as n; > n for all j and from Lemma 6. We
show that e is the only possible agreed candidate which is
selected for n’ in ¢h in Lines 3.23 — 3.24.

Assume by contradiction that a candidate g # e is se-
lected for n’. As e is an agreed candidate, g must be an
agreed candidate which is selected in Lines 3.23 — 3.24 and
predicates WAIT-AGR(A, n’, v, VC) and WAIT-ORD(A,
0, n/, v, VC) are false. As g is an agreed candidate, b + 1
replicas, including at least a correct one, have received from
the primary of view v a different order request for n’ than
the replicas which agreed on e. The old primary p(v) of
view v is thus Byzantine. From Lemma 6, no correct replica
can send a view change message with ¢ in its agreed his-
tory prefix for n’. By definition of AGREED-CAND, g is
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an agreed candidate only if all |VC| — f — b > b Byzan-
tine replicas, including the primary, have sent a view change
message with g in the agreed history prefix for n’ and v and
all these messages are in VC. As WAIT-ORD is false and
there are multiple different candidates, the new primary of
view v + 1 waits until |VC| > N — f. This implies that
g is not selected as an agreed candidate as g is included in
the agreed prefix of view change messages in V' C' sent by
at most b replicas but |[VC| — f —b> N —2f —b > 0.

Lemma 9 If ¢h = t-hist(v + 1, i) and there exist a history
prefix hp and a replier quorum R() such that |[RQ| = N — f
and @ C RQ is the subset of all correct replicas in R() and
for each j € Q, hp = prefix(n, v, j) and RQ-valid(RQ), n,
v, j), then hp is a request prefix of ih.

Proof: We consider the case where 4 is the primary of
view v + 1. The case of the other backup replicas is simi-
lar since the same recover function used by the primary to
recover ¢h is used the the backups.

Let [ be the replica having the the smallest agreement
watermark aw; among the replicas in (). As () contains
N — f — b correct replicas, Lemma 8 implies that the his-
tory prefix h' = prefix(aw;, v, 1) is a prefix of the initial
history ¢h. If n < aw;, then it follows from Lemma 2
that hp is a prefix of A’ and we are done. If n > aw
then RQ-valid(R(Q), n, v, ) implies by definition that RQ
is contained in the history element s of i’ for aw;, which
is the highest agreement watermark < n of replica [. It
thus follows from Lemma 8 that RQ is contained in the
candidate which is selected for sequence number aw; and
subsequently used to identify the observed candidates for
sequence number aw; + 1. We now prove by induction that
for all sequence numbers n’ such that aw; < n’ < n, the
client request included in hp for n’ is selected for the initial
history ih.

The inductive hypothesis implies that RQ,—1 = RQ.
As Q C RQ contains at least N — f — b correct replicas,
the new primary of view v + 1 receives view change mes-
sages from at least b of them. All these replicas report the
same history element for n/, which is thus a candidate e.
The replier quorum R() is included in e since for all j € @
it holds that RQ-valid(RQ, n, v, j). Assume by contradic-
tion that a candidate g # e is selected for n/. The candidate
g must be selected in one of the three cases of Lines 3.23 —
3.28. We show that in each of these cases we reach a con-
tradiction.

If g is selected in Lines 3.23 — 3.24, this implies that g
is an agreed candidate, AGREED-CAND(yg, n/, v, VC)
holds and the predicates WAIT-AGR(A, n’, v, V() and
WAIT-ORD(A, O, n’, v, VC) are false. As AGREED-
CAND holds, g is included in the local history of b + 1
replicas, including a correct one. This implies that g, as
well as e, has been associated by the old primary p(v) to



sequence number n. The old primary p(v) has thus sent in-
consistent order request messages for n’ and is thus Byzan-
tine. From Lemma 7, as Q contains N — f —b > f+b> f
replicas, only Byzantine replicas can claim to have agreed
on g for n’ and view v. It follows from AGREED-CAND
that all [VC| — f — b > b Byzantine replicas, including
the primary, have included g in the agreed history prefixes
of their view change messages, and all these view change
messages are included in V' C. If g is selected then WAIT-
ORD is false and [V C| > N — f as there are two different
candidates. In order to be selected as an agreed candidate, g
there must be at least one correct replica which has agreed
on g. This contradicts Lemma 7 as () contains more than f
correct replicas.

If g is an observed candidate selected in Lines 3.25 —
3.28, either g satisfies VERIFIED(g, VC, C'H) because
at least one correct replica was able to verify that the cor-
responding order request message was generated from the
old primary p(v), or e does not satisfy VERIFIED(e, VC,
CH). This in turns implies that p(v) is Byzantine. In fact, if
p(v) were correct then p(v) € @, since RQ-valid(RQ, n’, v,
7) holds for some correct replica j which always checks that
the primary of a view is a member of the replier quorums
in that view. All replicas j € @) would have the same his-
tory prefix hp = prefix(n, v, j) as p(v), including the same
authenticator which was generated by p(v) for the order re-
quest message corresponding to e. The candidate e, which
would be the only one generated by primary p(v), would
thus be the only verified candidate, a contradiction.

By hypothesis, only faulty replicas in Q = RQ, _1 can
associate g to n’. In order to be a candidate, g must be as-
sociated to n’ in the view change messages sent to the new
primary of v by all the [V C'|— f —b > b Byzantine replicas,
including at the old primary p(v), and all these messages
must be included in VC. As there are multiple candidates
and WAIT-ORD must be false for a candidate to be se-
lected, |V C| > N — f. From the definition of ORDERED-
CAND, g must be contained in the local history of at least
|[VC| — f — b > breplicas in RQ,,—1. As there are at most
b Byzantine replicas, g is associated to n’ in the message
history of at least one correct replica in RQ),,—1, which is
also included in ) by definition. This contradicts the fact
that e # g corresponds to a common history element for n’
and for all replicas j € Q.

Lemma 10 If complete(o, n, v, h, ¢) and b/ = t-hist(v + 1,
1) then h is a request prefix of /.

Proof: A client completes the request m in Lines 1.28 —
1.30 or in Lines 4.13 — 4.14.

If the client completes o in Lines 4.13 — 4.14, it has re-
ceived b + 1 stable replies from correct replicas j whose
committed prefixes include h as a prefix and whose com-
mit watermarks are n; > n. This implies that at least one
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correct replica has received in Lines 4.30 — 4.40 consistent
agree messages for its agreed history prefix from at least
N — f replicas. From Lemma 8 it follows that for each
correct replica 7, h is a prefix of h'.

If the client completes o in Lines 1.28 — 1.304, it has
received speculative replies from a set R(Q) of 3 f replicas j
claiming to have the same history prefix h = prefix (n, v,
7) and to be members of the same replier quorum R(Q) such
that p(v) € RQ. Let Q be the subset of correct replicas in
RQ@. From Lemma 4, for each j € @, RQ-valid(RQ, n, v,
j)and j € RQ. Therefore, @ C R(Q). From Lemma 9, it
follows that for each correct replica ¢, h is a prefix of A'.

Lemma 11 If complete(o, n, v, h, ¢) and k' = t-hist(v’, 1)
and v < v’ then h is a request prefix of /.

Proof: Assume by contradiction that & is not a prefix
of h'. If no correct replica had established a view v” such
that v < v” < v/, then all correct replicas would send for
view v’ the same view change messages as the ones sent for
view v + 1 except from the new view field. A contradiction
would thus follow from Lemma 10. Therefore, the primary
of view v’ must have received view change messages from
some replicas j having a valid view establishment certificate
for an established view v; with v < v; < v’ and for a cor-
responding established history h; = e-hist(v;, j) = t-hist(v;,
7). Let k be, among the replicas j, the replica which sends
the view change message with the highest established view
vk. This implies that hy, is selected as initial history zh,,
by the recover function. From complete(o, n, v, h, ¢) and
v < vy it follows that if A is not a prefix of A/, then h is
not a prefix of hy = t-hist(v;, j). This argument for v’ can
be inductively be applied to vy. By induction on the largest
established view v/ < v’ reported to the new primary of
view v”, h is not a prefix of r-hist(v”, i). Let v; be the
smallest view v” > v established by any correct replica i.
All correct replicas send for view v; the same view change
messages as the ones sent for view v + 1 except from the
new view field, but h is not a prefix of t-hist(v;, ). This
contradicts Lemma 10.

Lemma 12 If complete(o, n, v, h, ¢) and complete(o’, n’,
v, I/, ) and n < n' then h is a request prefix of /'.

Proof: Two clients ¢ and ¢’ can complete a request ei-
ther in Lines 1.28 — 1.30 or in Lines 4.13 — 4.14. If client
¢ completes a request after receiving b + 1 stable replies
in Lines 4.13 — 4.14, then h = a-prefix(n, v, i) for at least
N — f — b correct replicas 7. If client ¢’ completes a request
after receiving b+ 1 stable replies in Lines 4.13 — 4.14, then
h' = a-prefix(n/, v, j) for at least N — f — b correct repli-
cas j. From Lemma 6 and n < n/ it follows that h is a
prefix of 1. If client ¢’ delivers from 3 f speculative replies
in Lines 1.28 — 1.30, then h' = prefix(n/, v, j) for at least



N — f — b correct replicas j. From Lemma 7, it follows that
h is a prefix of h.

If client ¢ completes after receiving N — f speculative
replies in Lines 1.28 — 1.30, then h = prefix(n, v, ¢) for a
set Q of at least N — f — b correct replicas ¢. In order
to deliver either Lines 1.28 — 1.30, client ¢’ must receive
one reply from at least one correct replica ¢ € (), and the
result follows from Lemma 2. If ¢/ completes a request after
receiving b + 1 stable replies in Lines 4.13 — 4.14, then b’/
= a-prefix(n’, v, j) for at least N — f — b correct replicas
J, including at least one replica in ). From Lemma 2, this
implies that h is a prefix of h'.

Lemma 13 If complete(o, n, v, h, ¢) and complete(o’, n’,
v, l,cYandn < n/ and v < v/, then h is a request prefix
of h'.

Proof: 1If client ¢’ completes a request in view v’, this
implies that it receives speculative or stable replies from at
least one correct replica 7 in view v’ and that h' = prefix(n/,
v’, i). Since this replica has established v’, there exists
an established history h' = e-hist(v', i) = t-hist(v’, i) =
prefix(n”, v, 1). From complete(o, n, v, h, c), v < v' and
Lemma 11, h is a prefix of A”. It follows that h = prefix(n,
v’, i) and thus that h, i’ and A" are all prefixes of 7 in view
v'. Asn < n’, his aprefix of A’ from Lemma 2.

Lemma 14 If complete(o, n, v, h, ¢) and complete(o’, n’,
v, b/, dYandn < n' and v > v, then h is a request prefix
of h'.

Proof: 1If client ¢ completes a request in view v, this
implies that it receives speculative or stable replies from at
least one correct replica ¢ in view v such that h = prefix(n, v,
1). Since this replica has established v, there exists an estab-
lished history h'" = e-hist(v, i) = t-hist(v, i) = prefix(n”, v,
1). From complete(o’, ', v', W', ¢’), v’ < v and Lemma 11,
h' is a prefix of h”. It follows that ' = prefix(n, v, i) and
thus that h, b’ and h” are all prefixes of ¢ in view v. As
n < n/, his a prefix of i’ from Lemma 2.

Theorem 1 Property 1 holds.

Proof: Two clients can complete requests by receiving
enough replies from replicas in the same view. If they com-
plete their operations in the same view, the result follows
from Lemma 12. Else, it follows from Lemmas 13 and 14.

A.5 Scrooge liveness

The liveness property of Scrooge is the following:

Property 2 Ifa correct client issues a request, it eventually
completes it.

Additionally, Scrooge ensures the following property:
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Property 3 If the system is in a timely period, v is the cur-
rent established view for all correct replicas, the primary of
v is correct and faulty clients only crash, eventually all cor-
rect clients complete their requests from speculative replies.

In the proofs, we assume that the system eventually en-
ters a timely period where no timeout is fired and all sent
messages are received. We first show that Property 2 holds.

Lemma 15 If the system is in a timely period and there
exists a view v’ such that the primary of v’ is correct and all
correct replicas initiate a view change to v, then all correct
replicas eventually establish v'.

The view change protocol can block under this hypothe-
sis because the recover function never completes correctly
or because a new view can not be established. We now show
that the protocol does not block in either case.

For recovery, the new primary will eventually receive
N — f well-formed view change and check messages from
correct replicas. These also eventually satisfy the predi-
cate STABLE as the vector res of each check message
in C'H contain binary values (see Lines 2.20 — 2.22) and
each correct replica eventually sends its own outcome vec-
tor for each of these view change messages. As the system
is composed of at least N — f > f 4+ 2b > 2b correct
replicas, at least one of the two outcomes collects b + 1
check messages. Therefore, for recovery to block, either the
predicate WAIT-ORD or the predicate WAIT-AGREED
must still hold after N — f view change and check mes-
sages are received from correct replicas and |VC| > N — f
(Lines 3.20 — 3.21).

For WAIT-ORD, let mv < v’ be the highest view vc.v
reported by a view change message vc € V' C (Lines 3.11 —
3.15). If the old primary of p(mv) were correct, each his-
tory element stored by a correct replica in view mov would
be consistent with those of the primary of that view. If
p(mu) were correct and only correct replicas would have
sent view change messages to the new primary of view v,
there would not be inconsistent candidates. As multiple in-
consistent candidates are present and one of them is sent by
p(mw), it follows that at least one Byzantine replica, either
a backup which reports a forged element of the old primary,
has sent a view change message which is included in |V C|.
This implies tat [VC| > N — f so WAIT-ORD does not
hold.

For WAIT-AGREED to hold, the primary of view v’
must have received an agreed candidate e for sequence num-
ber n and view mv. According to the predicate definition,
this implies that (i) at most b correct replicas have associated
e in their local history for n and mw is their last established
view, and (ii) at most f + b correct replicas have a view
v # mu as last established view or do not associate e to
their agreed history prefix for sequence number n and view



mu. From (i) and from the fact that mu is the highest estab-
lished view contained in any view change message received
by the primary of the new view v, it follows that at least
f + b correct replicas have not yet established mwv or have
established mv but have not included e in their local history
for n. Therefore, from Lemma 5, no correct replica in view
mu can include e in their agreed history prefix for sequence
number 7. This implies that all N — f correct replicas either
have a view v” # mu as their last established view, or do
not associate e to their agreed history prefix for sequence
number n and view mwv. This contradicts (ii). Therefore,
WAIT-AGREED does not hold and the protocol does not
block due to the recover function.

After recovery is concluded, the new correct primary
sends new view messages to all correct replicas, which then
compute the same decision procedure as the primary in
Lines 2.24 — 2.28 and send consistent establish view mes-
sages. Lines 2.30 — 2.34 can thus be completed and the new
view is established.

Lemma 16 If the system is in a timely period, v is the cur-
rent view established by all correct replicas and a correct
replica sends an agreement message for sequence number n
and view v, then all other correct replicas eventually do the
same.

Proof: 1f a correct replica executes Lines 5.9 — 5.11
for n, then every other replica will receive an agreement
message for n. If the replica ¢ has already received an
order request for n, it starts agreement in Lines 4.23 —
4.28. Else, the agreement message makes the predicate
AGREEMENT-STARTED(:, n, v) hold. Agreement is
started by replica ¢ when the replica receives the order re-
quest for sequence number n (Line 1.26).

Lemma 17 If the primary of a view v is correct, the system
is in a timely period and v is the current view established
by all correct replicas, then a view change is never initiated
by a correct replica and all requests from correct clients are
completed.

Proof: A correct replica which does not suspect the pri-
mary and never executes Lines 4.42 — 4.44 initiates view
change only if at least another correct replica accuses the
primary (Lines 2.15 — 2.16). A correct replica accuses the
primary of the current view v in Lines 4.42 — 4.44 only if
it starts an agreement phase for a sequence number n in
Lines 5.9 —5.11 and the timer expires. From Lemma 16, if a
correct replica starts agreement each other correct replica do
the same. If the primary is correct and the system is timely,
the agreement phase is concluded by each correct replica
(Lines 4.23 — 4.28). This implies that the commit phase is
also concluded before the timer at any correct replica ex-
pires (Lines 4.30 — 4.40) and consistent stable replies are
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sent by all the N — f correct replicas. A correct client can
thus complete all its requests in Lines 4.13 — 4.14 by re-
sending them to all replicas.

Theorem 2 Property 2 holds.

Proof: We consider the system behavior when the the
system eventually enters a timely period. If the correct
client cannot complete a request from speculative replies
in view v in Lines 1.28 — 1.30, it contacts all correct
replicas until it can deliver a reply in Lines 4.13 — 4.14.
When correct backups receive from the client a request in
Lines 4.16 — 4.21, they start a timer and accuse the pri-
mary if the reconfiguration phase is not completed when
this expires (Lines 4.42 —4.44). If the primary is correct, all
correct replicas obtain an order request, start agreement in
Lines 1.10 — 1.12 or 4.16 — 4.21 or 1.26, and complete the
agreement and the commit phases. Since there are at least
N — f correct replicas in the system, the client can receive
b + 1 consistent stable replies and complete its requests in
Lines 4.13 — 4.14. If the primary is faulty and less than b+ 1
correct replicas conclude the commit phase and send a sta-
ble reply, at least f + b replicas timeout and send a view
change message to all other replicas. From Lines 2.15 —
2.16, all correct replicas also start a view change to remove
the faulty primary. This is iterated until either the client
completes the request in a view, or all replicas execute a
view change to a view v’ with a correct primary. From
Lemma 15, the view change to v’ is completed by all cor-
rect replicas. From Lemma 17, no correct replica initiate a
further view change and all requests from correct clients are
completed.

Scrooge also ensures the following additional liveness
property to re-establish speculation after a failure event.

Theorem 3 Property 3 holds.

Proof: We consider the system behavior when the the
system eventually enters a timely period. We first prove
that SPEC-RUN eventually holds for each correct replica
i. The primary proposes a replier quorum RQ,, = @ along
with an order request for sequence number n. If SPEC-
RUN does not hold for a correct replica ¢, the replica send
an agreement message for n in Lines 1.23 — 1.26. From
Lemma 16, all other correct replicas do the same. If the pri-
mary never changes its replier quorum again, this implies
that no client re-sends a request suspecting a replica in Q)
because all requests are completed from speculative replies,
g.e.d. Let us thus assume by contradiction that n’ is the low-
est sequence number after n where the primary associate a
replier quorum RQ), # @ to an ordered sequest. As the sys-
tem is timely, all correct replicas commit on sequence num-
ber n and send speculative replies for all sequence numbers
in (n,n’). Replicas do this in Lines 1.15 — 1.22 if they re-
ceive the order request for the sequence number after the



commit is reached, or in Line 4.40 otherwise. The primary
updates its suspect list in Lines 1.10 — 1.12 and proposes a
different replier quorum R(Q), = S for n’ only if the client
of a request with sequence number in (n,n’) has suspected
some replica in () as faulty and has indicated this while re-
sending the request (see Lines 5.1 — 5.6). The client re-
sends a request only if it has not received a speculative re-
ply from at least one replica in @), which is thus faulty. If
f =1, the new replier quorum S does not contain the faulty
replica. S is eventually committed as, as explained previ-
ously, all replicas send speculative replies for all sequence
number greater than n’, a contradiction. If f > 1, the re-
sult follows by simple induction on the number of faults
detected by clients.

B Integrating garbage collection

In this subsection we describe how garbage collection
is integrated intro Scrooge. Readers who are familiar with
PBFT [2] will notice that Scrooge uses the very same mech-
anisms.

B.1

In BFT replication protocols, the checkpoint subprotocol
is used to curb the size of the message history. With check-
poiting, replicas only store history elements with sequence
numbers in the range [l + 1,1 + L] where [ is called lower
watermark, L is the size of the history log, and [ + L is
called higher watermark.

Given a constant checkpoint interval K, a tentative
checkpoint of the application state is built after requests
with sequence number n such that (n mod K) = 0 are exe-
cuted. The checkpoint subprotocol indicates that a tentative
checkpoint can be retrieved by any correct replica because it
has been established by enough (i.e. b + 1) correct replicas.
When this happens, the checkpoint is considered as stable,
all history elements prior to n are garbage-collected, and
the lower watermark [ is set to n. The protocol steps are the
following:

Garbage collection

Step GC.1: Replica executes the n'" request
andnmod K =0

Replica 7 initiates an agreement phase by executing the
procedure agree for the request.

Step GC.2: Replica commits the n'" request
and n mod K = 0

Replica ¢ builds a tentative checkpoint composed by the
application state and the replier quorum associated with se-
quence number n in the history, and sends a checkpoint
message (CHECKPOINT, n, ¢),,, to all other replicas.

Step GC.3: Replica receives a checkpoint mes-
sage
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If areplica ¢ receives f 4 b+ 1 checkpoint messages cor-
responding to one of its tentative checkpoints for sequence
number n, it considers it as stable, it sets the lower water-
mark [ to n and garbage-collects the history elements and
tentative checkpoints for sequence numbers n’ < n.

B.2 Modifications to normal executions

Replicas simply need to check that their history log does
not overflow.

Lines 1.6 — 1.13: Primary receives a request
The primary assigns sequence number n to the request
only if n is not greater than its higher watermark [ + L.

Lines 1.15 — 1.26: Primary receives an order
request

A replica accepts an order request message or only if its
sequence number or.n is not greater than its higher water-
mark [ + L.

B.3 Modifications to view change

With checkpointing it is not necessary to recover the en-
tire history of previous requests but only a small subset of
it. Replicas include information about their current check-
point in their view change messages. An initial checkpoint
for the new view is selected by the recovery function based
on this additional information. The specific modifications
are the following:

Lines 2.1 — 2.5: Initiating view change

The format of the view change message is modified to
(VIEW-CHANGE, v/, v, mh, C, E i),,, where C is a set
containing, for each checkpoint stored by the replica, a tu-
ple (n,d, RQ) where n is the sequence number where the
checkpoint was taken, d is the digest of the application state,
and RQ) is the repliers quorum associated to n. Also, the
message history mh only includes the messages which are
currently in the log and have not yet been garbage-collected.

Recover function: Recovering the observed
history

The primary selects the checkpoint tuple (n',d, RQ,)
with the highest sequence number n’ which is contained in
the view change messages of at least b+ 1 replicas and such
that the view change messages of at least f 4+ b+ 1 replicas
report checkpoints for sequence numbers n < n’. This is
called initial checkpoint. The history is then recovered as
in the previous case but only for sequence numbers in the
range [n’ + 1,n’ 4+ L], where L is the size of the history
log. As in the previous case, the last established view mv
is still identified using view establishment certificates, but
the entire initial history ¢h, is not recovered. Therefore,
the instructions after Line 3.11 and until 3.15 are removed.



RQ,, is used to identify observed candidates for sequence
number n’ + 1.

Lines 2.24 — 2.28: Backup receives a new view
message

Backup replicas also perform the same steps as the pri-
mary to recover the initial history for the new view.

B.4 Correctness

We prove that checkpointing preserves both safety and
liveness. For safety we need to prove the following.

Lemma 18 If an initial checkpoint (n’,d, RQ,) is se-
lected and L is the size of the history log, then d and RQ.,,/
are respectively the only digest of the application check-
point and the only replier quorum associated with sequence
number n’ by any correct replica in any view.

Proof: A initial checkpoint is selected only if it has been
sent by b + 1 replicas, including a correct one. This correct
replica has thus completed the commit phase for sequence
number n’. It follows from an argument similar to those
of Lemmas 8 and 11 that the agreed history prefix for n’ is
recovered in any view by any correct replica.

Lemma 19 If an initial checkpoint (n’,d, RQ,/) is se-
lected and L is the size of the history log, then no request
with sequence number greater than n’ 4+ L has completed.

Proof: Let us assume by contradiction that a request r
is completed with sequence number n greater than n’ + L.
If r is completed in Lines 1.28 — 1.30 or 4.13 — 4.14, at least
N — f replicas have accepted an order request message with
sequence number n. From Lines 1.15 — 1.26 it follows that
n is not greater than their higher watermark. This implies
that the lower watermark of these N — f replicas is strictly
greater than n’ and, from Step GC.3, that their checkpoint
for n/ has been garbage-collected. At most f correct repli-
cas and b Byzantine replicas can thus report a checkpoint
for n/ in their view change messages. This checkpoint can
not be chosen as initial checkpoint by the recovery function
as it is included in the view change messages from at most
f + breplicas.

Liveness is also ensured as follows.

Lemma 20 A correct replica can always recover one prov-
ably correct checkpoint.

Proof: Consider a period where the system is timely
and let ¢ = (n,d, RQ,) be the stable checkpoint with the
highest sequence number among those established by any
correct replica at any given moment ¢. We prove that there
are at least b + 1 correct replicas storing ¢ as tentative or
stable checkpoint c. This ensures that, by receiving b + 1
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consistent checkpoints from these replicas, any other cor-
rect replica can prove that the checkpoint is correct. As-
sume by contradiction that at most b correct replicas store
c. This implies that a set () of at least f + b correct replicas
only store checkpoints for either smaller or larger sequence
numbers than n. As a correct replica has set ¢ as stable
checkpoint, at least f + b+ 1 replicas have once stored c as
tentative checkpoint (Step GC.3). It is thus impossible that
all the f + b correct replicas in () only store checkpoints
for sequence numbers smaller than n. At least one of them,
say 7, must have only stored checkpoints for sequence num-
bers larger than n. This implies that the tentative checkpoint
c has been garbage-collected by j because a higher stable
checkpoint has been reached. Therefore, c is not the stable
checkpoint with the highest sequence number among those
established by any correct replica at time ¢, a contradiction



