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Abstract. Fault-tolerant (FT) distributed protocols (such as group mem-
bership, consensus, etc.) represent fundamental building blocks for many
practical systems, e.g., the Google File System. Not only does one desire
rigor in the protocol design but especially in its verification given the
complexity and fallibility of manual proofs. The application of model
checking (MC) for protocol verification is attractive with its full au-
tomation and rich property language. However, being an exhaustive ex-
ploration method, its scalable use is very much constrained by the overall
number of diÆerent system states. We observe that, although FT dis-
tributed protocols usually display a very high degree of symmetry which
stems from permuting diÆerent processes, MC eÆorts targeting their au-
tomated verification often disregard this symmetry. Therefore, we pro-
pose to leverage the framework of symmetry reduction and improve on
existing applications of it by specifying so called role-based symmetries.
Our secondary contribution is to define a high-level description language
called FTDP to ease the symmetry aware specification of FT distributed
protocols. FTDP supports synchronous as well as asynchronous proto-
cols, a variety of fault types, and the specification of safety and liveness
properties. Specifications written in FTDP can directly be analyzed by
tools supporting symmetry reduction. We demonstrate the benefit of our
approach using the example of well-known and complex distributed FT
protocols, specifically Paxos and the Byzantine Generals.

1 Introduction

Model checking (MC) is a verification approach that exhaustively and automati-
cally simulates the system by starting it from initial states and generating paths
to verify that some specified properties hold along every path [7]. For designers
of distributed systems, in particular of fault-tolerant (FT) distributed protocols,
MC represents a useful tool for automatic verification of formal properties which
are usually hand-proved. Not only can MC provide supporting evidence of the
correctness of the proofs: it can also serve as a powerful tool for fast prototyp-
ing and debugging of protocols by showing counterexamples, i.e., runs violating
? Research supported in part by Microsoft Research, IBM Faculty Award and CASED.



Fig. 1. The proposed approach for verifying a FT distributed protocol P

a certain property. However, the use of MC in the design and verification of
distributed systems is still limited. In this paper, we identify (and tackle) two
major barriers that prevent a widespread use of MC for distributed protocols.

The first barrier is that the design of a model still requires significant MC-
specific expertise. Distributed systems designers typically use a pseudocode which
primarily represents the process behavior and which abstracts many details re-
quired by the model checker. When the properties of an algorithm are hand-
proved, only those predicates about the system and fault model which are needed
in the proofs are enunciated. With automatic verification, however, the system
and fault model need to be explicitly encoded into the model. This, together with
the fact that the input languages of MC often require detailed understanding of
the internal model representation used by the model checker, makes it di±cult
and error-prone for distributed systems designers to define models for MCs.

The second major limitation to the adoption of MC for verification of dis-
tributed systems is that the number of system states generated by the MC
becomes very often unfeasible, i.e., state space explosion. Existing approaches to
MC of FT distributed protocols disregard the fact that the symmetric nature
of such systems can lead to significant state space reductions. For example, in
many consensus protocols all processes execute the same algorithm and it is ir-
relevant to model which processes agree on a value as long as this is the same
for all processes.

Paper Contributions This paper introduces the FTDP language which (a)
allows writing models of FT distributed protocols using a simple pseudocode-like
language and (b) forces the specification of symmetric systems to yield a sound
and complete abstraction which eÆectively limits state space explosion. FTDP
addresses both discussed barriers. It allows the system designer to concentrate
on writing the pseudocode of the protocol behavior. The system and fault model
can be defined by picking the desired properties from a palette of pre-defined
templates which represent typical and well-known abstractions expressing the
properties of the communication channels (e.g. synchrony, reliability) and of
faults (e.g. crashes, Byzantine). FTDP also mitigates the state explosion problem
by showing and discussing how symmetry reduction [10, 8, 16] can be integrated
into automated model verification transparently to the system designer.

The basic idea of symmetry reduction is to identify groups of symmetric sys-
tem states such that it is su±cient to explore one representative state in each



group. However, the process of identification of symmetric states, commonly
called symmetry detection, is a complex task. Automatic detection of symmetries
in a model in order to produce a smaller, symmetry-reduced model is at least
as complex as exploring the original model. It is therefore up to the designer to
identify symmetries and express them in a language supporting symmetry reduc-
tion like SS [10]. FTDP identifies symmetries from the pseudocode of the system
by leveraging roles. Roles are independent processes which partition the oper-
ations executed by the nodes participating in the protocol. They are explicitly
defined, for example, in the Paxos protocol (leaders, acceptors and learners) [11]
and in the OM protocol (commander and lieutenants) [15]. Implicit roles can be
commonly identified in many distributed protocols (e.g., [1, 6, 18]). In our exper-
imental evaluations we show that role-based symmetry reduction of distributed
algorithms is very e±cient as it can reach almost optimal state reduction for
the detected symmetries. We also show that a role-based approach can be ex-
ponentially more e±cient in the number of roles than the common, simplistic
symmetry detection approach which considers nodes as the symmetric unit in
the system [10, 8].

Our overall verification approach is depicted in Figure 1. The system designer
writes a protocol’s pseudocode using the FTDP language. By doing this, it also
selects the appropriate system and fault model. FTDP is then automatically
translated to the language SS. SS is general and comes with a precise proof of
the correctness of symmetry detection. During the translation, FTDP uses roles
to specify the symmetries of the system. The SS model of the protocol is then
given as an input to a symmetry reduction model checker, which automatically
explores the system state and verifies the properties.

In order to show the viability of the approach, we present the FTDP models
of the Paxos and Oral Messages (OM) protocols. Both are fundamental consen-
sus protocols which representatively show how FTDP can be used over diÆerent
system models (asynchronous vs. synchronous) and over diÆerent fault models
(crash vs. Byzantine). These protocols also demonstrate how roles are com-
monly used in distributed algorithms. Experimental verification shows that our
approach can reduce the size of the state space of multiple orders of magnitude
over non-symmetric models as well as over node-based symmetry reductions.

A Motivating Example We give the intuition of the proposed approach
through the example of a simple reliable storage protocol. The protocol op-
erations here, of diÆerent phases of information exchange and consequent de-
cision/termination steps, are representative of a broad class of distributed FT
protocols. This protocol implements a regular read/write storage (RS) assuming
that only a strict minority of all processes can crash [17]. Channels are authenti-
cated, i.e., a receiver process can identify the sender of the message. A message
can be lost, duplicated or delayed but it cannot be forged. An RS is implemented
on top of read/write registers each of them located on a diÆerent physical node.
RS defines two roles, a single writer and n readers that can write/read to/from
the RS respectively. Being a fault-tolerant solution, processes should be able to



Fig. 2. (a) Example of the regular read/write storage protocol. (b-c) Outline of the
pseudocode of the same protocol using the usual node-based and the proposed role-
based symmetries resp. (d) The benefit of the role-based approach: the node-based
approach cannot detect that global state s00 is symmetric with global states s and s0.

access the RS even if some registers are unaccessible. Figure 2(a) sketches how
the protocol works if n = 4 in a setting where the registers are located on the
same physical nodes as the readers and where the writer and one reader are
located on the same node. The writer can write a value v into RS by invoking
write(v). This operation consists of requesting every register to update its value
to v together with the writer’s latest timestamp (t). The write completes if any
majority of the registers have sent an acknowledgement. Even though reader 2
does not have v locally, it can use the RS protocol to obtain the value by invok-
ing a read operation. The reader first requests every register to report the value
with the latest timestamp, waits for a reply from a majority of all registers and
returns the value with the largest timestamp among the replies. MC must verify
that the RS is regular, i.e., a read always returns a value v that was actually
written and v is not older than the value written by the last preceding write.1

Figure 2(b) shows the template of the pseudocode specification of the RS
protocol used to detect node-based symmetries by construction. The designer
specifies that the system consists of nodes, each of them able to host a writer
and a reader. Nodes are declared to be symmetric, i.e., their local states are
interchangeable. Symmetry violations are prevented in the specification language
by disallowing the definition of symmetry-breaking operations. The global state
of the system at each instant of time is given by an array storing the local state
of each node of the system.

Figure 2(c), on the other hand, depicts the pseudocode-template of the same
protocol with the ability of detecting role-based symmetries (like in FTDP).
Every role, writer and reader, is defined to be symmetric. There is one writer

1 An operation op1 precedes op2 if op1 completes before op2 is invoked.



process and four reader processes. The assignment of processes to physical nodes
needs not be modeled because the properties of RS does not specify nodes. The
global state of the system is the set of arrays, each of them belonging to a
role, storing the local state of each role instance. The benefit of the role-based
approach is demonstrated by an example in Figure 2(d). Three global states
s, s0 and s00 are shown which only diÆer regarding which node has missed a
read request. All these global states are symmetric because each of them can be
obtained from another by permuting the IDs of the readers. However, the node-
based approach cannot detect that s00 is symmetric with s and s0 because the
model has to remember that reader 1, which is the only one hosted on the same
node as the writer, has received the read request. Therefore, the model checker
explores two states (s or s0 and s00) in the node-based model. In contrast, it
su±ces to explore a single state (arbitrarily selected among s, s0 and s00) in the
role-based model.

Related Work A recent survey of general applications and tools for symmetry
reduction is [16]. Our work is related to symmetry detection and to approaches
that are specific to automated formal verification of FT distributed protocols.
We assume that the model checker can distinguish between symmetric states;
related techniques are also surveyed in [16].

The proposed solution assumes that the system consists of a finite number
of processes. This strong assumption enables us to provide full automation and
an expressive property language. Our recent brief announcement [4] provides a
summary level overview of the approach. A powerful tool for the specification and
the analysis of distributed systems is provided by the TLA+ language and the
TLC model checker [13]. TLC supports symmetry reduction and requires that
the user detects symmetries. FTDP models automatically detect symmetry and
can be also translated into TLA+. +CAL [14] is a language allowing high-level
specification of algorithms which, similarly to FTDP and SS, is automatically
translated into TLA+. +CAL does not support the specification of symmetries
and is lower-level (and also more general) than FTDP. For example, the modeling
of message-based communication and faults must be implemented by the user.

Other work uses model checkers with no symmetry reduction support to
verify consensus protocols under the crash fault model and the Heard-Of sys-
tem model [23, 24]. The latter model assumes that a message which is sent in a
communication round cannot arrive in later rounds. This additional assumption
facilitates verification of consensus protocols, but is only sound for systems im-
plementing it. The symmetry detection approach of FTDP can also be extended
to exploit symmetry under the Heard-Of system model. Since FTDP restricts to
finite models, the technique of abstracting protocols using infinite time stamps
into a finite representation [23] can be combined with our approach.

Another work verifies the optimistic termination of Byzantine consensus pro-
tocols [25]. This approach diÆers from ours in many aspects: it is specific to
consensus protocols, it uses a dedicated verification engine, it does not use sym-
metries, and it does not verify the entire protocol but rather focuses on opti-



Fig. 3. (a) Example symmetric state space with symmetry reduction. The dashed line
states are not explored leading to state space reduction. (b) If the system has two
nodes, each running instances of two roles a and b, where instances of a have states a1

and a2 and instances of b has states b1 and b2, symmetric state º2(s) is not detected
in the classic node-based approach but (c) is detected in the role-based approach.

mistic cases. Model checking of self-stabilizing algorithms was proposed by using
symbolic techniques that are (under favorable conditions) insensitive to the large
number of initial states [22]. However, diÆerent but symmetric initial states need
not be explored, which, if combined with explicit state model checking, does not
suÆer from the drawback of symbolic approaches. Work that uses MC to verify
specific FT distributed protocols but that disregards symmetry (e.g., [21]) can
naturally leverage our technique.

2 A Role-based Approach to Tackling Symmetry

Symmetries of Distributed Protocols A typical example of symmetries in
the state space, or state graph, of the system is when all nodes in a distributed
system execute the same process. The intuition is that a (global) system state
s where two processes i and j assume diÆerent local states is symmetric with
another state º(s) where these two local states are swapped. Formally, symmetry

[8] is a permutation º acting on all reachable system states satisfying that for
every state s and its successor s0 it holds that º(s0) is a successor of º(s).2
Figure 3 (a) shows a simple case of a symmetric state graph, where any pair
among s,º1(s) and º2(s) is symmetric.

Symmetry reduction [16] exploits such symmetries to ease model checking.
The idea is that the system exhibits indistinguishable behavior when started
from symmetric states if the property under verification does not distinguish
symmetric states. By using this technique a reduced model, or reduced state

graph, is explored which is defined such that every state s of the reduced model
2 More generally, the pairs of symmetric states s and º(s) yield a bi-simulation for

the state graph.



is a representative state among all states of the original model that are symmetric
with s, and two states are connected in the reduced model if any two states of
the corresponding sets of symmetric states are connected in the original model.
In Figure 3(a) the reduced state graph contains only the representative states
s, s0, s00, and their relations.

Detecting Symmetries The definition of symmetry shows that all relations
and states in the non-reduced state space may have to be visited to automati-

cally detect symmetries, although this entails the very same complexity we want
to eliminate. Therefore, we take the approach of creating symmetric models by

construction, where the exploration of the state space is not needed because sym-
metries are indicated by the system designer. In order to indicate symmetries
in the model the designer uses a special data type called scalarsets. Scalarsets
were introduced in the SS language and define subranges with restricted opera-
tions, e.g., scalarset values can only be checked for equivalence and arrays with
scalarset index type cannot be indexed by constants. The restrictions guarantee
that any permutation of scalarset values results in symmetric states.

E±cient Symmetry Detection via Roles We observe that most FT dis-
tributed protocols are expressed, or can be easily expressed, in terms of roles.
Protocols are executed by computing elements, termed processors or nodes. Each
node executes one or more state machines, called processes, whose state consists
of input and output message buÆers and a local state. State transitions are
atomic and are activated by either reading a message from the input buÆer or
by responding to an internal event (e.g. timeouts). Possible eÆects of a state
transition are changing the local state of the process and writing new messages
in its output buÆer.

As protocols normally consist of a single process pi per node i 2 [1, n], it
is natural to model the system as the parallel composition p1|| . . . ||pn and to
represent the current system state as a configuration, i.e., a tuple containing for
each node i the local state of its process pi. This is done by existing symmetry
reduction approaches for distributed protocols, which use a single scalarset to
represent the IDs of nodes in the current configuration (e.g. [10, 8]). Each node
is thus modeled as an atomic entity and two configurations are symmetric if the
states of the nodes can be permuted. We call this approach node-based.

The key idea of FTDP is that it lets the designer define a set R of roles, which
are independent processes having non-intersecting states and whose state tran-
sitions are activated by non-intersecting sets of incoming messages and internal
events. The behavior of each process pi is expressed in FTDP as the parallel
composition pi = r1

i || . . . ||r
ki
i , where each rj

i is an instance of a role in R and
where each role has at most one instance per process. Our role-based symmetry
detection identifies symmetries by permuting the states of multiple role instances
rather than the states of nodes as a whole. FTDP models each role in R with a
separated scalarset whose size is determined by the number of the corresponding
role instances in the system. In other words, we do not model the local state of a



node but the local state of each role instance separately. This is possible because
the properties of the protocol specify roles rather than nodes.

We illustrate the diÆerence between role- and node-based approaches using
the example state graph of Figure 3 (a). All states s, º1(s) and º2(s) are symmet-
ric but only a role-based approach may be able to detect all existing symmetries.
Consider for example that these states model a protocol where each of the two
nodes executes instances of two roles {a, b} = R as in Figures 3 (b) and (c). A
node-based approach can detect the symmetry of s and º1(s) because two node
states are permuted, but no symmetry is detected between º2(s) and any of the
previous states. This symmetry can be detected by our role-based approach be-
cause role instances, rather than nodes, are modeled as basic symmetric entities.

The role-based approach can yield an exponentially larger number of sym-
metric states compared to classic node-based approaches. In the best-case, the
model reduced using the symmetries detected by the role-based approach con-
tains less states than the original model by a factor of at most

Q
i=1...|R| ni!,

where R is the set of roles and ni is the number of processes executing role
ri 2 R. This is because every state in the reduced model corresponds to at most
ni! diÆerent states in the original model where ni instances of ri are permuted.
In our experiments we show that this best-case reduction is almost reached for
both Paxos and OM(1), so the identified reductions are very e±cient. Further-
more, role-based detection can lead to an exponential best-case gain in terms
of state reduction compared to the classic node-based approach in common sys-
tems. Assume that all n nodes execute all roles, i.e., ni = n for all i. In this case,
the maximum benefit of symmetry reduction with the node-based symmetry
detection approach is n!, which is (n!)|R|°1 times less than with the role-based
approach. Note that there is no guarantee that the reduced state space remains
intractably large. In fact, symmetry reduction is able to mitigate state space
explosion instead of fully tackling it.

3 The FTDP Language by Example: Modeling Paxos

Our goal is to create a language which, besides detecting symmetries, is able
to faithfully model a broad class of FT distributed protocols. Models written in
our language resemble the pseudocode of protocols so that system designers can
easily use it.

We now present the FTDP language through the example of the Paxos proto-
col [11]. The complete FTDP model to verify the safety of Paxos is very compact
and as depicted in Figures 4 and 5. The syntax of FTDP can be found in the
Appendix.

Paxos solves the consensus problem, where each process keeps a local value
and only one of these values is delivered to all processes. It assumes asynchronous,
lossy channels with out-of-order delivery and at most a minority of processes
which can crash. In a didactic paper [12] successive to [11], Lamport explicitly
mentions three roles for each process, leaders, acceptors and learners. Leaders
send a proposal, composed of the current local value and a proposal number,



Channel Models

Asynchronous / (No / Existing) known upper bound on
Synchrony

Synchronous computation and message transmission delays

Reliability Lossy / Reliable Sent messages (are not / are) eventually received

Authentication Authenticated The receiver can identify the sender of the message

Out-of-order / Sent messages (are not / are) received
Delivery order

FIFO in the same order as they are sent

Duplication No Sent messages are not duplicated by the channel

Channel size B-bounded At most B messages can be sent but not yet received

Fault Models

Correct / Process always follows specification /

Status Crash faulty / Process eventually stops /

Byzantine faulty Process does not follow specification

Table 1. Overview of system models available in the FTDP language

to all acceptors. An acceptor accepts a proposal only if it has not yet received
any other proposal with a higher proposal number. A proposal is termed as
chosen if a majority of acceptors accepts it. A chosen proposal can be learnt by
the learners by collecting the accepted proposals from the acceptors. Consensus
requires that (a) it is impossible that two proposals with diÆerent values are ever
chosen (safety) and (b) a proposal is eventually learnt (liveness).3

Palette of System Models and API The FTDP language supports multiple
common system models that usually appear in FT distributed protocols. We
model systems as parallel compositions of processes, i.e., role instances, commu-
nicating via messages sent through point-to-point directed channels. A summary
of the diÆerent channel and fault models that can be selected by the user in
FTDP are depicted in Table 1. A global parameter of every FTDP model deter-
mines a specific channel model. A field called status denotes for each process
whether the process is correct, crash faulty or Byzantine.

Incoming messages activating state transitions are referred by the special
variable msg, which has a user defined message type. A set of variables of the
form 2roleName[k] is used for sending a message to the kth process executing in
the specified role (e.g., 2leader[k]). These variables are written by the sender
process and have a user defined message type.

FTDP Model Structure and Declarations Every FTDP model defines
four blocks for the definitions of roles and message types (type), state variables
(var), initial assignments of the variables (init), and rules updating the vari-
ables (rules). The first three blocks for Paxos are depicted in Figure 4. A role
is defined for leaders and acceptors by the role name and the number of the cor-
responding role instances m and n, which are constant model parameters (line 1
and 2). In order to verify safety we only need to model that a proposal is chosen
so learners are not modeled explicitly. The type of messages is defined between

3 Note that in MC terms a liveness property diÆers from a safety property in that it
can only be violated through infinite runs.



Fig. 4. Paxos modeled in FTDP — Declaration of types and variables, initialization
with two leaders

lines 3-7. We define messages using a record where the value of the first field
indicates the message type.

In every FTDP model, an array is defined for each role (lines 8-15 and 16-
19), which stores the local states of role instances. The local state consists of the
values of all state variables of the corresponding process. For example, proposal
numbers are stored in an array called propNoPool (line 10). The FTDP model
of Paxos is parametric in the size of this array (L). The Paxos protocol assumes
that the sets of proposal numbers are disjoint for diÆerent leaders. We implement
this by assigning in the init block distinct values in [1..m · L] to the elements
of the propNoPool arrays.

We specify symmetry by declaring that the local states of role instances
can be freely permuted. The syntax of the FTDP language guarantees that the
permutation yields symmetric states. This results in state space reduction if two
processes of the same role have diÆerent local states which can be permuted
in two diÆerent (global) system states in the original model. For example, the
local state of two acceptors can diÆer when only one of them receives a leader’s
message. On the other hand, role-based symmetry detection cannot achieve the
theoretically maximum benefit when the two acceptors can have the same local
state, for example because both receive the leader’s message.



Fig. 5. Paxos modeled in FTDP — Rules and safety property

State Initialization and Transitions Initialization rules are used to set the
initial values of process variables and the fault model of each process. Since asyn-
chronous communication and concurrent operations between leaders are more
challenging to handle than leader crashes, the initialization rule of Figure 4 sets
all leaders as correct and selects a minority of crash faulty acceptors (lines 21-33).
For simplicity of the presentation, we assume that m=2 and L=2. The initializa-
tion rule is parametric in the process IDs so that there is a distinct rule for each
possible assignment of the parameters i1, i2 and j1 . . . jd(n+1)/2e to process IDs.
For example, in case of n = 3, the assignment i1 = 1, i2 = 2, j1 = 1, j2 = 3
determines one instance of the rule.

Each FTDP rule corresponds to a state transition which can update the local
state and send messages. The rules for Paxos, separated by [], are depicted in
Figure 5. Rules are labeled for an easier reference. For example, the rule labeled
as leaderElect (lines 36-43) handles an internal event triggered by leader elec-



tion which makes leader i propose its value. Other rules are parameterized by i
and j, the receiver and the sender of a message. Rules in FTDP can be guarded
by a Boolean condition (lines 37, 46, 54, 68). For example, leaderElect is exe-
cuted only if there is some unused proposal number left in the pool (line 37).

Temporal Properties in FTDP Safety in Paxos requires that once a proposal
with a value val is chosen, no other proposal is chosen at some time in the
future with a value diÆerent from val. Such properties can be naturally written
in temporal logics. FTDP supports Computation Tree Logic (CTL*) which is
a powerful temporal logic containing other useful logics like CTL or LTL. For
example, safety can be defined in FTDP by using the temporal operators G
(“always”) and F (“eventually”) (Figure 5, lines 71-78).4 The basic assumption
of role-based symmetries is that the property does not specify which role instance
is executed by which physical node. In fact, the specification of such properties
is impossible in FTDP as the model does not have the notion of nodes.

4 Symmetry Reduction of FTDP Models

The syntax of FTDP hides the modeling of channels and faulty processes from
the user. These are modeled in the SS translation of FTDP models. In other
words, FTDP defines syntactic sugar for SS. The translation between FTDP
and SS guarantees that out-of-order delivery, message losses and process faults
are considered in all possible ways. Therefore, no case can be overlooked which
is necessary for a sound verification process. The soundness of verification is
also aÆected by the property of the protocol. The property language of FTDP
supports a broad class of properties that is provably preserved by symmetry
reduction. We now give an overview of the translation between FTDP and SS
and our property preservation results. The precise semantics of FTDP can be
found in our technical report available online [3].

Faithful Model of Environment Channels are modeled via message buÆers.
An input buÆer is an array or a multiset depending on whether the channel is
FIFO or delivers messages out-of-order. The size of each input buÆer is bounded
by B. Output buÆers correspond to the API variables in the form 2roleName[k]
and can contain a single message. The transmission of a message is modeled by
moving it from the output buÆer of the sender process into the input buÆer of
the recipient process. In case this buÆer is full the message is discarded (lossy
channels) or the sender must wait until all the messages it is sending can be
copied into the input buÆers of the recipients (reliable channels). We model
authenticated channels by defining at each process a buÆer for each other process.
A process receives and processes a message by removing it from the input buÆer.

4 Note that because of the implication in line 77 it is not required that another proposal
is ever chosen.



In lossy channels it is decided non-deterministically if a message in the input
buÆer is lost, in which case it is removed without processing.

A crash faulty process that has not yet crashed is modeled such that it
correctly follows the process specification. Upon receiving a message from a
crash faulty process, it is decided non-deterministically if the message is actually
processed. If not, the sender is considered to be crashed and the message is
discarded as it had not been sent. In such a way we also model scenarios where
a process crashes after it has sent a message to only a subset of processes.

The state of a Byzantine process is not modeled. We model a process re-
ceiving a message from a Byzantine sender by non-deterministically selecting an
arbitrary message from the domain. Thus, the size of this domain directly aÆects
the size of the state space.

A system is synchronous if there is a known upper bound on message compu-
tation and delivery time, and is considered asynchronous otherwise. We model
synchronous systems by assuming that a correct process waiting for a message is
able to perfectly detect if the sender is faulty and the message will never arrive.
Therefore, we introduce a Boolean flag msg.absent which is true if and only if
the sender is either Byzantine faulty and fails to send a message or is crashed.
The message itself (msg) contains the necessary information about which mes-
sage is missing.

Property Preservation Symmetry reduction is sound to use only if it pre-
serves the properties in FTDP, which is provided by the following theorem:

Theorem 1. [10, 8] Let P be an SS model and AP a set of Boolean expressions

defined over the variables in P . Given the state graph representation M of P , let

the reduced state graph MR be obtained from M by the permutation of scalarset

values. MR preserves every CTL* property f over AP , that is, f holds in M iÆ

f holds in MR.

The property language of FTDP is essentially CTL* where the quantifiers,
for example in the safety property of Paxos of Figure 5, are syntactic sugar for
ANDs and ORs. Since the translation from FTDP to SS does not change AP , the
above theorem justifies the soundness of our proposed approach as depicted in
Figure 1. The details of the proof can be found in [3]. Note that every proposition
p in AP is symmetric in that it cannot distinguish between specific role instances.
Formally, in FTDP p must be quantified (existentially or universally) over the
IDs of role instances. This constraint about AP enables the preservation of a
class of properties as general as CTL*. We remark that the same constraint is
needed if we restrict to a simpler class of properties such as simple invariants.
Techniques where less symmetric properties can be preserved, at a price of less
reduction, are surveyed in [16].

5 Experiments

We tested our approach on the representative synchronous and asynchronous
Paxos and the OM(1) protocols. These two protocols represent a wide spectrum



Protocol Param. Property Symm. red. States Gain E±c. Time Result

No 1,591,897 268 s Verified

safety Node-based 795,945 2x 33% 226 s Verified

Role-based 136,915 12x 96% 32 s VerifiedPaxos
m = 2 Erroneous No 649,301 61 s CE found

n = 3 safety (chosen Node-based 325,074 2x - 226 s CE found

L = 1 = accepted) Role-based 57,677 11x - 12 s CE found

Faulty Paxos No 1,114,891 126 s CE found

(always accept safety Node-based 562,298 2x - 122 s CE found

proposals) Role-based 101,239 11x - 20 s CE found

No 1,797 0.1 s Verified

n = 3 IC1-2 Node-based 941 2x 31% 3 s Verified

Role-based 345 5x 85% 0.1 s Verified

No 150,417 9.6 s Verified

OM(1) n = 4 IC1-2 Node-based 26,401 6x 24% 17 s Verified

Role-based 6,999 22x 90 % 7.4 s Verified

No - - Out of mem.

n = 5 IC1-2 Node-based 2,402,167 - - 4 h Verified

Role-based 490,839 - - 2 h Verified

Faulty OM(1) No 934 0.1 s CE found

(two Byzantine n = 3 IC1 Node-based 843 1.1x - 2.9 s CE found

faults) Role-based 200 5x - 0.1 s CE found

Fig. 6. (a) Results of model checking Paxos and OM(1) with Mur' using no, node-based and role-

based symmetry reduction: ”Verified” if the property can be proved, ”Out of mem.” if the state

space explodes, and ”CE found” if a counterexample was identified. (b) Comparison between the

maximum and measured benefit of role-based symmetry reduction (n = 5, OM(1) see table).

of diÆerent system and fault models. DiÆerent from Paxos, OM(1) is a syn-
chronous, Byzantine fault tolerant consensus protocol using reliable channels. It
defines two roles, a single commander who proposes its local value and n lieu-
tenants who will agree on the same value if at most one general or lieutenant
is Byzantine and n ∏ 3 (IC1). Moreover, if the commander is correct its local
value must be the agreed value (IC2). Conditions IC1-2 are called the interactive
consistency (IC) conditions. The full FTDP model of OM(1) can be found in
the Appendix (Figure 8).



We used the Mur' symmetry reduction model checker [9] as it implements
the SS language.5 Since Mur' only supports invariants, i.e., properties that must
hold in all states of the model, we instrumented our SS models by monitors to
check properties containing temporal operators. Monitors save system states that
are specified by the property (e.g., the first chosen proposal in Paxos) and use it
as a reference in other states (e.g., where a new proposal is chosen). Properties
that cannot be defined via invariants and monitors, like liveness in Paxos, cannot
be verified using Mur' and thus are excluded from the experiments.

Mur' uses diÆerent heuristics to minimize the (time and space) overhead of
checking whether a state is symmetric with a previously visited one. Therefore,
Mur' might also expand states that are symmetric. The results of the exper-
iments are depicted in Figure 6 using Mur'’s “heuristic fast canonicalization”
algorithm. The results of Figure 6(a) include a comparison of the node-based and
role-based approaches, the verification of the properties of both protocols as well
as false properties and fault-injected protocols where, for each case, a counterex-
ample was found. Our experiments cover for both protocols those (non-trivial)
settings that were feasible to verify with Mur'. All experiments were executed
on DETERlab machines [2], equipped with a Xeon processor and 4 GB memory
and running a Linux installation with Fedora 6 core. The results show that sym-
metry reduction was able to achieve a benefit of at least one magnitude in terms
of the number of visited states. Furthermore, OM(1) with 5 lieutenants could
not be verified without symmetry reduction because the queue of unexplored
states ran out of memory.

Figure 6 also compares the size of the reduced model (in terms of the number
of visited states) with the lower bound on the number of non-symmetric states,
i.e., the theoretical maximum benefit of node-based and role-based symmetries
(see Section 2). The proportion of these two numbers is called e±ciency [10]. It
can be seen that both protocols are almost optimally symmetric with respect to
their roles (approaching 100% e±ciency). This is also highlighted in Figure 6(b)
where we compare the size of the reduced model (middle bar) with the lower
bound (rightmost bar), and relate them to the size of the original model (leftmost
bar). This comparison cannot be done for OM(1) with n = 5 because the size of
the original model is unknown. We can observe that the diÆerence between the
achieved and maximum benefit is within 3% of the size of the original model.

The node-based models assume that the number of nodes equals max{ni},
i.e., the maximum number of processes executing the same role. Nodes can be
arbitrarily allocated for role instances as long as no node hosts more than one role
instance of the same role. Our experiments show that the role-based symmetry
detection approach is superior to the node-based one in terms of the number
of explored states. Note that even in the case of OM(1), where the theoretical
maximum benefit is the same for the node-based and role-based approaches, the
measured benefit is considerably higher with role-based symmetry detection.

5 Other symmetry reduction model checkers like SymmSpin [5] or SMC [20] can also
be used if the SS translation of FTDP models is adapted for the input language of
the model checker. The SMC model checker supports liveness properties as well.



Intuitively, this is because the node-based model has to remember whether a
lieutenant is hosted on the same node as the commander.

6 Conclusion

We have created FTDP, a pseudocode-like specification language for FT dis-
tributed protocols which can be directly used to model check the target protocol
against its properties without specific MC expertise. FTDP flexibly supports
the most used system and fault models and is able to specify symmetries of the
protocol if it is divided into roles, a term familiar to protocol designers. We have
shown that FTDP can naturally and compactly specify complex and widely-used
distributed protocols such as Paxos and OM. Our role-based symmetry detec-
tion approach can be exponentially more e±cient than the node-based approach.
Our experiments on the MC of these protocols have shown that they are highly
symmetric with respect to their roles as the experienced benefit approaches the
theoretical maximum, and that the reduction in terms of the number of visited
states is very significant, that is, around one order of magnitude.
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A The FTDP Language

A.1 The Syntax

Figure 7 depicts the BNF syntax of FTDP. As usual, the operator “[]” is used
to select array elements and “.” to address fields of a record. The names of
non-terminals specific to FT distributed protocols are prefixed by “FTDP”. The
following types are pre-defined in every model: the roles used by the protocol
(hFTDP-roleDeclsi) and the type of a message (Msg). The first type defines for
each role hFTDP-roleTypei the number of role instances. A message is modeled
through a record of fields. For simplicity, the language allows the definition of
one type of message only. This is not a limitation because the same type can be
used to model various messages. Every FTDP model maintains for each role an
array hFTDP-roleStatei to store the local state of each role instance.

Every FTDP model must define at least one initial state. This is done via
hrulei. A simple rule is defined by a sequence of statements (hstmti) and labeled
for easier reference. A statement is used to update the values of process variables.
Rules are separated by using the [] operator. Parameterized rules can be defined
by writing [](hidi : htypeExpri). This means that a rule is defined for every
possible value of id. The execution of a rule means that the statements defined
by the rule are executed. The state of the protocol is updated through the
execution of a rule. If multiple rules are defined any of them can be executed.
This is how the FTDP language supports non-determinism.



Fig. 7. The syntax of the FTDP language



Name Type Scope Usage Description

msg Msg rules R Latest mess. received by proc. i from j
msg.absent bool rules R True iÆ the mess. was not sent

roleName[i ].status {corr,crash,byz} init RW Status of proc. i in role “roleName”

2roleNamej array[roleIdj] of Msg rules W Proc. i’s mess. to “roleNamej” instances

Table 2. List of predefined variables in FTDP modeling a protocol with k roles (j 2 [1..k]). Variables

can be read-only (R), read/write (RW), and write-only (W). Proc. i is defined in the FTDP rule.

The statement undefine(v) can be used to assign a special undefined value
to all values in variable v. The predicate isundefined(v) is used to check if
all values in v assume the undefined value. Otherwise, a variable var can be
assigned a value val by writing var:=val. Conditional and iterative statements
are defined similar to ordinary programming languages.

Rules that describe how correct processes or processes that have not yet
crashed update their variables are defined via hFTDP-rulei. These rules can be
combined similarly to hrulei. The rule hFTDP-onTransitioni defines an event
handler of the ith role instance in the specified role (hFTDP-roleIdi) to update
its local state in response to an internal event. Another rule hFTDP-onReceipti
defines an event handler for the receipt of a message. The rule is parameterized
by a reference to the receiver and sender role instances (i and j). Both rules
are guarded by a Boolean condition (hFTDP-guardi) to govern which handler is
executed. In order to avoid deadlocks in our models the ELSE rule can be used
which executes the empty statement if no other rule can be executed.

The list of pre-defined variables and their description is depicted in Table 2.
The use of these variables is better explained in Section 3 and in [3].

Symmetry by Construction We define conditions C1-C5 to ensure that the
symmetry of an FTDP model is not broken. These conditions can be verified
through simple syntactic checking. We assume that they are (automatically)
checked by an interpreter.

(C1) An array with role index type can only be indexed by a variable of exactly
the same type.

(C2) A term of role type may not appear as an operand to + or any other operator
in a term.

(C3) Variables of role type may only be compared using =.
(C4) For all assignments d := t, the types of d and t may be (possible diÆerent)

subranges or exactly matching roles.
(C5) Variables, elements of arrays and fields of records written by any iteration

of a “for” statement indexed by a role type must be disjoint from the set of
variables, elements of arrays and fields of records referenced (read or written)
by other iterations.

The Property Language We adopt the Computation Tree Logic (CTL*) [7] to
define properties of FT distributed protocols. Properties of an FTDP model can



be defined via the CTL* temporal operators based on AP (atomic properties),
where AP contains all Boolean expressions in the FTDP language. We refer to
our technical report [3] for more details about CTL*.

There are two types of CTL* formulas, state formulas (which are true in a
specific state of the system) and path formulas (which are true along a path of
consecutive system states). The syntax of state formulas is summarized here:

– If p 2 AP , then p is a state formula.
– If f and g are state formulas then ¬f , f ^ g and f _ g are state formulas.
– If f is a path formula, then Ef (“there is a path”) and Af (“for all paths”)

are state formulas.

Path formulas can be defined via the following two rules:

– If f is a state formula, then f is also a path formula.
– If f and g are path formulas, then ¬f , f ^ g, f _ g, X f (“next”), F f

(“eventually”), G f (“always”), f U g (“until”) and f R g (“release”) are
path formulas.

A.2 The Semantics

The semantics of SS is given via state graphs [10]. We show a translation which
translates an FTDP model into an SS one. In this way every FTDP model
determines a state graph. The semantics of FTDP properties is defined following
the standard semantics of CTL* [7].

Preliminary into SS The syntax of the SS language [10] is similar to FTDP
without the protocol specific details. In SS the user can also define aliases, i.e.,
short names of long variable references. In addition, a special data type called
scalarset is available in SS. A scalarset is a subrange of natural numbers with re-
stricted operations. The restrictions are essentially C1-C5 with scalarsets rather
than roles. C1-C5 ensure that the behavior of the program is invariant under
arbitrary permutation of the elements of a scalarset. When a new scalarset is
declared, its size n is specified (n must be finite), and it represents a subrange
from 1 to n with restricted operations. Another data type in SS is multiset.
Multiset is an abstraction of an unordered array. The operations of the array,
i.e., read and write access, are restricted in order to satisfy that the array is
unordered. In fact, a multiset variable can only be accessed through the fol-
lowing special operators: choose, multisetAdd, and multisetRemove. (choose
id:mset) is used to non-deterministically select the identifier id of an element
in a multiset mset. The element can be referred by writing mset[id]. The func-
tions multisetAdd(msetElem,mset) and multisetRemove(id,mset) are used
to add a new element msetElem and to remove a previously selected one, respec-
tively. Another function multisetCount(mset,pred) can be used to count the
number of elements that satisfy the Boolean predicate pred in mset.



Translation From FTDP to SS The translation between FTDP and SS
models is shown in Table 3. First, the field absent (line 2) is defined in the mes-
sage record type to implement the detection of send omissions. The pre-defined
variable status is implemented as a variable with enumeration type in the lo-
cal state of each role instance; the constant crashed is defined to distinguish
between processes that can potentially crash or have crashed already.

We define at each role instance a buÆer for incoming messages from all
other role instances (lines 7-9). For simplicity, Table 3 depicts the translation
when channels can deliver messages out-of-order. Therefore, multisets are used
to represent input message buÆers. Assuming B-bounded channels, the syntax
multiset[B] is used to declare a multiset with size B. The implementation
of FIFO channels is discussed in [3]. Output buÆers are defined as auxiliary
variables (line 13, 24 and 42). In SS, the user can define auxiliary variables,
introduced after the with keyword, that are defined in the scope of a rule and
whose values are not included in the state of the system.

Rules are executed only if the process is correct or not yet crashed (lines
12, 22 and 40). Upon handling an internal event, the statements defined in the
event handler of the FTDP model are simply copied into the SS model (line 15).
This is followed by a routine that copies each message that is sent by the ith

role instance into the incoming buÆer of the recipient process (line 16 and lines
47-53). Note that this is only done if the recipient process is not crashed nor
Byzantine nor is the buÆer full.

The translation is more complicated if the event handler receives and pro-
cesses an incoming message. A distinction is made whether or not the sender of
the message is Byzantine. Two rules, label1 and label2, are generated in SS
to handle these cases. In the first rule (label1) where the sender is not Byzan-
tine (lines 18-37) the received message is non-deterministically chosen from the
incoming buÆer corresponding to the sender of the message (line 20). The mes-
sage is renamed to msg for compliance with the FTDP model (line 21). The rule
is parameterized with two additional Boolean flags, senderCrash (line 18) and
msgLoss (line 19) to decide whether the sender has crashed and whether the
message is lost, respectively. The flag msgLoss is only defined if lossy channels
are modeled. In this case, only messages that are not lost are processed (line 25);
otherwise the message is simply removed from the buÆer. For simplicity, Figure
3 depicts the translation when channels are lossy. Details about the translation
with reliable channels can be found in [3].

If senderCrash is true, then the status of the sender of a message is set to
crashed (line 30). Only processes that are marked as crash faulty are allowed
to crash. It is possible that a process had crashed after sending a message to a
subset of processes. This is also decided by the senderCrash flag. If the flag is
set the statements defined by the event handler are not executed nor messages
are sent unless the system is synchronous and the absence of the message can be
detected (lines 28-32). Either way the message is removed from the buÆer (line
36). In the second rule (label2) where the sender is Byzantine (lines 39-46)
message msg is a parameter of the rule (line 39). This is because the message



buÆers only contain messages sent by non-Byzantine processes. A Byzantine
sender is modeled in a way that a rule is generated for every possible message
in the domain. The translation simply copies the statements and includes the
routine to send messages (lines 44-45).

Finally, the translation substitutes every occurrence of the FTDP keyword
role with scalarset. This is how SS is able to detect role-based symmetries.
Since C1-C5 are equivalent with the scalarset restrictions, our translation pro-
duces valid SS models.

B Property Preservation of Symmetry Reduction in
FTDP Models

Let M = (S,R) and L be the state graph representation of an FTDP model
(according to Section A.2). The reduced state graph MR = (SR, RR) (also called
“quotient graph”) is obtained from M based on the symmetries induced by the
scalarset data types [10], where every [s] 2 SR is an equivalence class containing
all states symmetric with s and ([s], [q]) 2 RR iÆ ((s0, q0) 2 R) for some s0 2 [s]
and q0 2 [q]. LR is defined such that, for every [s] 2 SR, LR([s]) = L(rep([s])),
where rep([s]) is the representative state in [s]. The semantics of a CTL* formula
f in MR and LR follows the standard semantics of CTL* [7]. Our property
preservation result can be stated as follows:

Theorem 1 If M,L and MR, LR are the corresponding state graphs and labeling

functions of an FTDP model and f is an FTDP property, then M |= f iÆ

MR |= f .

We use two Lemmas to prove Theorem 1. Formally, a symmetry º in M is a
permutation acting on S. A symmetry º is invariant for atomic property p 2 AP
if p 2 L(s) iÆ p 2 L(º(s)) for all s 2 S. Our first Lemma appears as “Theorem
4.1” in [8]:

Lemma 1. If the atomic properties are symmetric, i.e., every symmetry in

M = (S,R) that is used to obtain MR is invariant for every atomic property

p occurring in a CTL* formula f , then M |= f iÆ MR |= f .

To prove Theorem 1, we have to prove that every atomic property p in an
FTDP property f is symmetric. Let fp be an invariant property, i.e., fp = G(p).
fp in SS is defined via an additional rule that navigates the system into a special
state called error if p is false in the current state of the system. Therefore, fp

and M implies the following state graph: Mp = (S [ {error}, Rp) such that
Rp = R [ {(s, error)|p 62 L(s)}. Our second Lemma appears as “Theorem 3” in
[10] and it proves the following:

Lemma 2. Every º which is induced by the permutation of scalarset values is

a symmetry in Mp
.

Lemma 2 implies that (s, error) 2 Rp iÆ (º(s), error) 2 Rp. Therefore,
applying Lemma 2 to every p in f and using the definition of Rp imply the
precondition of Lemma 1.



Table 3. The SS translation of an FTDP model of a protocol with k roles assuming
out-of-order and lossy channels. Lines marked with “*” are only used for synchronous
systems.



C The FTDP Model of Byzantine Generals

The Oral Messages (OM) protocol solves consensus in a synchronous environ-
ment with reliable channels and Byzantine processes (called Byzantine Generals)
[15]. The protocol is parametric in a, and we write OM(a), which is the number
of Byzantine processes in the system. OM defines two roles, a single comman-
der and n lieutenant processes. Any process can be Byzantine but their number
is bounded by a. Briefly, the OM(a) protocol works like this: the commander
in OM sends an order to all lieutenants who exchange the value of this order
in subsequent communication rounds. The number of communication rounds is
given by a. Figure 8 shows the FTDP model of the OM(1) protocol.

Consensus is defined through two properties under the condition that n ∏
3a (see Figure 8). The first property of OM (called IC1 — “IC” comes from
Interactive Consistency) defines that all lieutenants obey the same order. We
define this by requiring that eventually every pair of correct processes decides
for an order and this order must be the same. The second property of OM (called
IC2) defines that all lieutenants obey the order sent by the commander if the
commander is correct.



Fig. 8. OM(1) and its properties specified in FTDP


