
Zab: High-performance broadcast for
primary-backup systems

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini
Yahoo! Research

f fpj,breed,serafinig@yahoo-inc.com

Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incremental state changes to backup processes1.
Due the dependence of an incremental state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enables multiple outstanding state changes by guaranteeing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchronization phase completes, a new primary does not
broadcast new state changes. Finally, Zab uses an identification
scheme for state changes that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our applications. Our implementation of Zab
can achieve tens of thousands of broadcasts per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous consensus, Atomic broadcast

I. INTRODUCTION

Atomic broadcast is a commonly used primitive in dis-
tributed computing and ZooKeeper is yet another application
to use atomic broadcast. ZooKeeper is a highly-available
coordination service used in production Web systems such as
the Yahoo! crawler for over three years. Such applications
often comprise a large number of processes and rely upon
ZooKeeper to perform important coordination tasks, such as
storing configuration data reliably and keeping the status of
running processes. Given the reliance of large applications on
ZooKeeper, the service must be able to mask and recover from
failures. [1]

ZooKeeper is a replicated service, and it requires that a
majority (or more generally a quorum) of servers has not
crashed for progress. Crashed servers are able to recover
and rejoin the ensemble as with previous crash-recovery
protocols [2], [3], [4]. ZooKeeper uses a primary-backup

1A preliminary description of Zab was presented as a brief announcement
at the 23rd International Symposium on Distributed Computing, DISC 2009.

scheme [5], [6], [7] to maintain the state of replica processes
consistent. With ZooKeeper, a primary process receives all
incoming client requests, executes them, and propagates the
resulting non-commutative, incremental state changes in the
form of transactionsto the backup replicas using Zab, the
ZooKeeper atomic broadcast protocol. Upon primary crashes,
processes execute a recovery protocol both to agree upon a
common consistent state before resuming regular operation
and to establish a new primary to broadcast state changes. To
exercise the primary role, a process must have the support of
a quorum of processes. As processes can crash and recover,
there can be over time multiple primaries and in fact the
same process may exercise the primary role multiple times. To
distinguish the different primaries over time, we associate an
instance value with each established primary. A given instance
value maps to at most one process. Note that our notion
of instance shares some of the properties of views of group
communication [8], but it presents some key differences. With
group communication, all processes in a given view are able to
broadcast, and configuration changes happen when any process
joins or leaves. With Zab, processes change to a new view (or
primary instance) only when a primary crashes or loses support
from a quorum.

Critical to the design of Zab is the observation that each
state change is incremental with respect to the previous state,
so there is an implicit dependence on the order of the state
changes. State changes consequently cannot be applied in any
arbitrary order, and it is critical to guarantee that a prefix of the
state changes generated by a given primary are delivered and
applied to the service state. State changes are idempotent and
applying the same state change multiple times does not lead to
inconsistencies as long as the application order is consistent
with the delivery order. Consequently, guaranteeing at-least
once semantics is sufficient and simplifies the implementation.

As Zab is a critical component of the ZooKeeper core,
it must perform well. Some applications of ZooKeeper en-
compass a large number of processes and use ZooKeeper ex-
tensively. Previous systems have been designed to coordinate
long-lived and infrequent application state changes [9], [10],
[11]. We designed ZooKeeper to have high throughput and
low latency, so that applications could use it extensively on
cluster environments: data centers with a large number of well-
connected nodes.

When designing ZooKeeper, however, we found it difficult
to reason about atomic broadcast in isolation. There are re-

978-1-4244-9233-6/11/$26.00 ©2011 IEEE 245

PO atomic broadcast also implements a key additional prop-
erty called strict causality: if some process delivers hv; zi and
hv0; z0i , then either hv; zi � po hv0; z0i or hv0; z0i � po hv; zi .
Strict causality is needed because transactions are incremental
updates so they can only be applied to the state used to produce
them, which is the result of a chain of causally related updates.
With causal order, however, there can be transactions delivered
that are not causally related.

Figure 4 shows an execution satisfying causal order (and PO
causal order), but not strict causality, since hv; zi and hv0; z0i
are both delivered even though they are causally independent.
This example shows that none of the two primitives is stronger
than the other.

Process pi

Process pj
abdeliver(!v'',z''")abcast(!v',z'") abdeliver(!v,z")abdeliver(!v',z'")

abcast(!v'',z''")abcast(!v,z") abdeliver(!v,z")abdeliver(!v',z'")

Fig. 4. Example of an execution satisfying causal order (and PO causal
order), but not strict causality, epoch(z) < epoch(z0) < epoch(z00) .

It follows directly from the core properties that PO atomic
broadcast implements PO causal order and strict causality [15].

IV. ALGORITHM DESCRIPTION

Zab has three phases: discovery, synchronization, and broad-
cast. Each process executes one iteration of this protocol at
a time, and at any time, a process may drop the current
iteration and start a new one by proceeding to Phase 1.
There are two roles Zab process can perform according to the
protocol: leaderand follower. A leader concurrently executes
the primary role and proposes transactions according to the
order of broadcast calls of the primary. Followers accept
transactions according to the steps of the protocol. A leader
also executes the steps of a follower.

Each process implements a leader oracle, and the leader
oracle provides the identifier of the prospective leader ‘ . In
Phase 1, a process consults its leader oracle to determine
which other process ‘ it should follow. If the leader oracle
of a process determines that it is the leader, then it executes
the leader steps of the protocol. Being selected the leader
according to its oracle, however, is not sufficient to establish
its leadership. To establish leadership, a process needs to
complete the synchronization phase (Phase 2).

f.p Last new epoch proposal follower f acknowledged, initially ?
f.a Last new leader proposal follower f acknowledged, initially ?
hf History of follower f , initially hi

f.zxid Last accepted transaction identifier in hf

TABLE I
SUMMARY OF PERSISTENT VARIABLES

In the phase description of Zab, and later in the analysis,
we use the following notation:

Definition IV.1. (History) Each follower f has a history hf

of accepted transactions. A history is a sequence.

Definition IV.2. (Initial history) The initial history of an
epoch e, I e, is the history of a prospective leader of e at the
end of phase 1 of epoch e.

Definition IV.3. (Broadcast values) � e is the sequence of
transactions broadcast by primary � e using abcast(hv; zi).

The three phases of the protocol are as follows:
Phase 1 (Discovery): Follower f and leader ‘ execute the
following steps:
Step f: 1:1 A follower sends to the prospective leader ‘ its

last promise in a CEPOCH(f:p) message.
Step ‘: 1:1 Upon receiving CEPOCH(e) messages from a

quorum Q of followers, the prospective leader ‘ proposes
NEWEPOCH(e0) to the followers in Q. Epoch number e0

is such that it is later than any e received in a CEPOCH(e)
message.

Step f: 1:2 Once it receives a NEWEPOCH(e0) from the
prospective leader ‘ , if f:p < e 0, then make f:p e0 and
acknowledge the new epoch proposal NEWEPOCH(e0).
The acknowledgment ACK-E(f:a; h f) contains the cur-
rent epoch f:a of the follower and its history. Follower
completes Phase 1.

Step ‘: 1:2 Once it receives a confirmation from each follower
in Q, it selects the history of one follower f in Q
to be the initial history I e′ . Follower f is such that
for every follower f 0 in Q, f 0:a < f:a or (f 0:a =
f:a) ^ (f 0:zxid � z f:zxid). Prospective leader completes
Phase 1.

Phase 2 (Synchronization): Follower f and leader ‘ execute
the following steps:
Step ‘: 2:1 The prospective leader ‘ proposes

NEWLEADER(e0; I e′) to all followers in Q.
Step f: 2:1 Upon receiving the NEWLEADER(e0; T) message

from ‘ , the follower starts a new iteration if f:p 6=e0.
If f:p = e0, then it executes the following actions
atomically:
1) It sets f:a to e0;
2) For each hv; zi 2 I e′ , it accepts he0; hv; zii , and makes

hf = T .
Finally, it acknowledges the NEWLEADER(e0; I e′) pro-
posal to the leader, thus accepting the transactions in T .

Step ‘: 2:2 Upon receiving acknowledgements to the
NEWLEADER(e0; I e′) from a quorum of followers, the
leader sends a commit message to all followers and
completes Phase 2.

Step f: 2:2 Upon receiving a commit message from the leader,
it delivers all transactions in the initial history I e′ by
invoking abdeliver(hv; zi) for each transaction hv; zi in
I e′ , following the order of I e′ , and completes Phase 2.

Phase 3 (Broadcast): Follower f and leader ‘ execute the
following steps:
Step ‘: 3:1: Leader ‘ proposes to all followers in Q in

increasing order of zxid, such that for each proposal

249

he0; hv; zii , epoch(z) = e0, and z succeeds all zxid values
previously broadcast in e0.

Step ‘: 3:2: Upon receiving acknowledgments from a quo-
rum of followers to a given proposal he0; hv; zii , the
leader sends a commit COMMIT(e0; hv; zi) to all follow-
ers.

Step f: 3:1: Follower f initially invokes ready(e0) if it is
leading.

Step f: 3:2: Follower f accepts proposals from ‘ following
reception order and appends them to hf .

Step f: 3:3: Follower f commits a transaction hv; zi
by invoking abdeliver(hv; zi) once it receives
COMMIT(e0; hv; zi) and it has committed all transactions
hv0; z0i such that hv0; z0i 2 hf , z0 � z z.

Step ‘: 3:3: Upon receiving a CEPOCH(e) message from
follower f while in Phase 3, leader ‘ proposes back
NEWEPOCH(e0) and NEWLEADER(e0; I e′ � � e′).

Step ‘: 3:4: Upon receiving an acknowledgement from f
of the NEWLEADER(e0; I e′ � � e′) proposal, it sends a
commit message to f . Leader ‘ also makes Q Q[f f g.

2

Note that a realization of this protocol does not re-
quire sending complete histories with ACK-E(f:a; h f) and
NEWLEADER(e0; I e′), only the last transaction identifier in
the history followed by missing transactions. It is also possible
to omit values in acknowledgements and commit messages in
Phase 3 to reduce the size of messages.

The following section discusses the Zab protocol in more
detail along with some implementation aspects.

V. ZAB IN DETAIL

In our implementation of Zab, a Zab process can be looking
for a leader (ELECTION state), following (FOLLOWING
state), or leading (LEADING state). When a process starts,
it enters the ELECTION state. While in this state the process
tries to elect a new leader or become a leader. If the process
finds an elected leader, it moves to the FOLLOWING state
and begins to follow the leader. Processes in the FOLLOWING
state are followers. If the process is elected leader, it moves to
the LEADING state and becomes the leader. Given that a pro-
cess that leads also follows, states LEADING and FOLLOW-
ING are not exclusive. A follower transitions to ELECTIONif
it detects that the leader has failed or relinquished leadership,
while a leader transitions to ELECTIONonce it observes that it
no longer has a quorum of followers supporting its leadership.

The basic delivery protocol is similar in spirit to two phase
commit [16] without aborts. The primary picks values to
broadcast in FIFO order and creates a transaction hv; zi . Upon
receiving a request to broadcast a transaction, a leader pro-
poses he;hv; zii following the order of zxid of the transactions.
The followers accept the proposal and acknowledge by sending
an ACK(e;hv; zi) back to the leader. Note that a follower does
not send the acknowledgment back until it writes the proposal
to local stable storage. When a quorum of processes have
accepted the proposal, the leader issues a COMMIT(e;hv; zi).
When a process receives a commit message for a proposal

he;hv; zii , the process delivers all undelivered proposals with
zxid z0, z0 � z z.

Co-locating the leader and the primary on the same process
has practical advantages. The primary-backup scheme we use
requires that at most one process at a time is able to generate
updates that can be incorporated into the service state. A
primary propagates state updates using Zab, which in turn
requires a leader to initiate proposals. Leader and primary
correspond to different functionality, but they share a common
requirement: election. By co-locating them, we do not need
separate elections for primary and leader. Also important is
the fact that calls to broadcast transactions are local when they
are co-located. We consequently co-locate leader and primary.

A. Establishing a new leader

Leader election occurs in two stages. First, we run a leader
election algorithm that outputs a new process as the leader.
We can use any protocol that, with high probability, chooses
a process that is up and that a quorum of processes selects.
This property can be fulfilled by an
 failure detector [17].

Figure 5 shows the events for both the leader and followers
when establishing a new leader. An elected leader does not
become established for a given epoch e until it completes
Phase 2, in which it successfully achieves consensus on the
proposal history and on itself as the leader of e. We define a
established leader and a established epoch as follows:

Definition V.1. (Established leader) A leader ‘ e is estab-
lished for epoch e if the NEWLEADER(e; Ie) proposal of ‘ e

is accepted by a quorum Q of followers.

Definition V.2. (Established epoch) An epoch e is established
if there is an established leader for e.

Once a process determines that it is a prospective leader by
inspecting the output of the leader election algorithm, it starts a
new iteration in Phase 1. It initially collects the latest epoch of
a quorum of followers Q, proposes a later epoch, and collects
the latest epoch and highest zxid of each of the followers in
Q. The leader completes Phase 1 once it selects the history
from a follower f with latest epoch and highest zxid in a
ACK-E(f:a; h f). These steps are necessary to guarantee that
once the prospective leader completes Phase 1, none of the
followers in Q accept proposals from earlier epochs. Given
that the history of a follower can be arbitrarily long, it is not
efficient to send the entire history in a ACK-E(f:a; h f). The
last zxid of a follower is sufficient for the prospective leader
to determine if it needs to copy transactions from any given
follower, and only copies missing transactions.

In Phase 2, the leader proposes itself as the leader of
the new epoch and sends a NEWLEADER(e; Ie) proposal,
which contains the initial history of the new epoch. As with
ACK-E(f:a; h f), it is not necessary to send the complete initial
history, but instead only the transactions missing. A leader
becomes established once it receives the acknowledgments
to the new leader proposal from a quorum of followers, at
which point it commits the new proposal. Followers deliver

250

